Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
All brain iron disorders were previously labeled Hallervorden-Spatz syndrome, after the scientists who first discovered individuals with abnormal iron levels in 1922. Brain iron disorders are now divided into three categories: genetic neurodegeneration with brain iron accumulation, genetic systemic iron accumulation with neurologic features, and acquired diseases associated with iron excess or iron deficiency. Neuroferritinopathy is classified under the first category, genetic neurodegeneration with brain iron accumulation. Neuroferritinopathy is classified as a late-onset basal ganglia disease and is a dominantly inherited neurodegenerative disease. Four different alleles are responsible for neuroferritinopathy. Three arise from nucleotide insertions in the ferritin light chain (FTL) polypeptide gene while the fourth arises from a missense mutation in the FTL gene.
Neuroferritinopathy or adult-onset basal ganglia disease is a genetic neurodegenerative disorder characterized by the accumulation of iron in the basal ganglia, cerebellum, and motor cortex of the human brain. Symptoms, which are extrapyramidal in nature, progress slowly and generally do not become apparent until adulthood. These symptoms include chorea, dystonia, and cognitive deficits which worsen with age.
This disorder is autosomal dominant and is caused by mutations in the gene encoding the light chain subunit of the ferritin protein. Wild type ferritin functions as a buffer for iron, sequestering it and controlling its release. Thus, mutations in the light chain of ferritin result in the accumulation of iron in the brain which can be imaged using MRI. Currently, neuroferritinopathy is the only neurodegenerative disease with an iron accumulation in the brain classified as an autosomal dominant syndrome.
Treatment of neuroferritinopathy is focused on managing symptoms associated with chorea and dystonia using standard medications for each. The disorder is progressive and symptoms become worse with age. Fewer than 100 cases of neuroferritinopathy have been reported since its identification in 2001. Its incidence has been largely localized to Northeast England suggesting a founder effect. Due to its genetic nature, current research is focused on therapeutic management of the symptoms caused by the disorder.
An effective treatment has yet to be found. In many cases electrical stimulation of the globus pallidus has been shown to produce improvement of dystonia severity, however it has not been shown to delay neurodegeneration. There is often overlap in the phenotypes of the symptoms both between different NBIA disorders and between NBIA and other disorders, leading to misdiagnoses. Treatments typically treat or ameliorate the symptoms and do not address the accumulation of iron. Psychotherapy, such as dopaminergic drugs, anticholinergics, tetrabenazine, is often used to treat the symptoms but does not improve the long term outcome of the patient.
The group includes the following disorders:
- Pantothenate kinase-associated neurodegeneration (PKAN) also known as neurodegeneration with brain iron accumulation 1 (NBIA1) and Hallervorden–Spatz syndrome
- PLAN (PLA2G6-associated neurodegeneration)
- MPAN (Mitochondrial membrane protein-associated neurodegeneration)
- BPAN (Beta-propeller protein-associated neurodegeneration)
- FAHN (Fatty acid hydroxylase-associated neurodegeneration)
- Kufor–Rakeb syndrome
- Neuroferritinopathy
- Aceruloplasminemia
- Woodhouse–Sakati syndrome
- CoPAN (CoA synthase protein-associated neurodegeneration)
- Idiopathic NBIA
- Neurodegeneration with brain iron accumulation 2B (NBIA2B)
- Neurodegeneration with brain iron accumulation 3 (NBIA3)
Different genetic causes and types of Leigh syndrome have different prognoses, though all are poor. The most severe forms of the disease, caused by a full deficiency in one of the affected proteins, cause death at a few years of age. If the deficiency is not complete, the prognosis is somewhat better and an affected child is expected to survive 6–7 years, and in rare cases, to their teenage years.
An average clinical profile from published studies shows that the median onset age for HDLS patients is 44.3 years with a mean disease duration of 5.8 years and mean age of death at 53.2 years. As of 2012, there have been around 15 cases identified with at least 11 sporadic cases of HDLS. HDLS cases have been located in Germany, Norway, Sweden, and the United States, showing an international distribution focusing between Northern Europe and the United States.
Through the study of numerous kindred, it was found that the disease did not occur among just males or females, but rather was evenly distributed indicative of an autosomal rather than a sex-linked genetic disorder. It was also observed that the HDLS cases did not skip generations as it would occur with a recessive inheritance, and as such has been labeled autosomal dominant.
Neurodegeneration with brain iron accumulation (NBIA) is a group of inherited neurological disorders in which iron accumulates in the basal ganglia, resulting in progressive dystonia, Parkinsonism, spasticity, optic atrophy or retinal degeneration and neuropsychiatric abnormalities. NBIA disorders have been associated with genes in synapse and lipid metabolism related pathways. Describes a group of disorders characterized by an accumulation of brain iron and the presence of axonal spheroids in the central nervous system. Iron accumulation can occur any where in the brain, with accumulation typically occurring in globus pallidus, substantia nigra, pars reticula, striatum and cerebellar dentate nuclei. Symptoms can include various movement disorders, seizures, visual disturbances, and cognitive decline, usually in combination. The known causes of NBIA disorders are mutations in genes directly involved in iron metabolism, impaired phospholipid and ceramide metabolism, lysosomal disorders, as well as mutations in genes with unknown functions. Onset can occur at different ages, from early childhood to late adulthood. Magnetic resonance imaging (MRI) is used to distinguish between the different forms of NBIA due to the accumulation of iron in different areas of the brain. Patients typically fall into two different categories: (1) early onset, rapid progression or (2) late onset, slow progression. The first type is considered to be the classic presentation, while the second type is the atypical presentation. Phenotypes of the different disorders appear to be dependent on age, i.e. amount of iron accumulation and cognitive ability.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
This condition is very rare, only affecting one in two million people. It is more common in females than in males. There are several hundred cases in the United States, 25 known cases in the United Kingdom, and less than that in Australia and New Zealand.
Children of affected individuals are obligate carriers for aceruloplasminemia. If the CP mutations has been identified in a related individual, prenatal testing is recommended. Siblings of those affected by the disease are at a 25% of aceruloplasminemia. In asymptomatic siblings, serum concentrations of hemoglobin and hemoglobin A1c should be monitored.
To prevent the progression of symptoms of the disease, annual glucose tolerance tests beginning in early teen years to evaluate the onset of diabetes mellitus. Those at risk should avoid taking iron supplements.
Treatment includes the use of iron chelating agents (such as desferrioxamine) to lower serum ferritin concentration, brain and liver iron stores, and to prevent progression of neurologic symptoms. This, combined with fresh-frozen human plasma (FFP) effectively in decreasing liver iron content. Repetitive use of FFP can even improve neurologic symptoms. Antioxidants such as vitamin E can be used simultaneously to prevent tissue damage to the liver and pancreas.
Hereditary diffuse leukoencephalopathy with spheroids (HDLS) is a rare adult onset autosomal dominant disorder characterized by cerebral white matter degeneration with demyelination and axonal spheroids leading to progressive cognitive and motor dysfunction. Spheroids are axonal swellings with discontinuous or absence of myelin sheaths. It is believed that the disease arises from primary microglial dysfunction that leads to secondary disruption of axonal integrity, neuroaxonal damage, and focal axonal spheroids leading to demyelination. Spheroids in HDLS resemble to some extent those produced by shear stress in a closed head injury with damage to axons, causing them to swell due to blockage of axoplasmic transport. In addition to trauma, axonal spheroids can be found in aged brain, stroke, and in other degenerative diseases. In HDLS, it is uncertain whether demyelination occurs prior to the axonal spheroids or what triggers neurodegeneration after apparently normal brain and white matter development, although genetic deficits suggest that demyelination and axonal pathology may be secondary to microglial dysfunction. The clinical syndrome in patients with HDLS is not specific and it can be mistaken for Alzheimer's disease, frontotemporal dementia, atypical Parkinsonism, multiple sclerosis, or corticobasal degeneration.
Many other neurological conditions are associated with acanthocytosis but are not considered 'core' acanthocytosis syndromes. The commonest are:
- Pantothenate kinase-associated neurodegeneration, an autosomal recessive condition caused by mutations in "PANK2".
- Huntington's disease-like syndrome type 2, an autosomal dominant condition caused by mutations in "JPH3" that closely resembles Huntington's disease.
- Bassen-Kornzweig disease, or Bassen-Kornzweig Syndrome (see also History).
- Levine-Critchley syndrome (see History).
- Paroxysmal movement disorders associated with GLUT1 mutations.
- Familial acanthocytosis with paroxysmal exertion-induced dyskinesias and epilepsy (FAPED).
- Some cases of mitochondrial disease.
Leigh disease occurs in at least 1 of 40,000 live births, though certain populations have much higher rates. In the Saguenay-Lac-Saint-Jean region of central Quebec, Leigh syndrome occurs at a rate of 1 in 2000 newborns.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
Type A Niemann–Pick disease (about 85% of cases) has an extremely poor prognosis, with most cases being fatal by the age of 18 months. Type B (adult onset) and type C (mutation affecting a different molecule) Niemann–Pick diseases have a better prognosis.
Clinical presentation of CBD usually does not occur until age 60, with the earliest recorded diagnosis and subsequent postmortem verification being age 28. Although men and women present with the disease, some analysis has shown a predominant appearance of CBD in women. Current calculations suggest that the prevalence of CBD is approximately 4.9 to 7.3 per 100,000 people. The prognosis for an individual diagnosed with CBD is death within approximately eight years, although some patients have been diagnosed over 17 years ago (2017) and are still in relatively good standing, but with serious debilitation such as dysphagia, and overall limb rigidity. The partial (or total) use of a feeding tube may be necessary and will help prevent aspiration pneumonia, primary cause of death in CBD. Incontinence is common, as patients often can't express their need to go, due to eventual loss of speech. Therefore, proper hygiene is mandatory to prevent urinary tract infections.
The length of the trinucleotide repeat accounts for 60% of the variation in the age symptoms appear and the rate they progress. A longer repeat results in an earlier age of onset and a faster progression of symptoms. Individuals with more than sixty repeats often develop the disease before age 20, while those with fewer than 40 repeats may not ever develop noticeable symptoms. The remaining variation is due to environmental factors and other genes that influence the mechanism of the disease.
Life expectancy in HD is generally around 20 years following the onset of visible symptoms. Most life-threatening complications result from muscle coordination and, to a lesser extent, behavioral changes induced by declining cognitive function. The largest risk is pneumonia, which causes death in one third of those with HD. As the ability to synchronize movements deteriorates, difficulty clearing the lungs and an increased risk of aspirating food or drink both increase the risk of contracting pneumonia. The second greatest risk is heart disease, which causes almost a quarter of fatalities of those with HD. Suicide is the third greatest cause of fatalities, with 7.3% of those with HD taking their own lives and up to 27% attempting to do so. It is unclear to what extent suicidal thoughts are influenced by behavioral symptoms, as they signify sufferers' desires to avoid the later stages of the disease. Other associated risks include choking, physical injury from falls, and malnutrition.
McLeod syndrome is an X-linked recessive disorder caused by mutations in the "XK" gene encoding the Kx blood type antigen, one of the Kell antigens.
Like the other neuroacanthocytosis syndromes, McLeod syndrome causes movement disorder, cognitive impairment and psychiatric symptoms. The particular features of McLeod syndrome are heart problems such as arrhythmia and dilated cardiomyopathy (enlarged heart).
McLeod syndrome is very rare. There are approximately 150 cases of McLeod syndrome worldwide. Because of its X-linked mode of inheritance, it is much more prevalent in males.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
The families of individuals who have inherited or are at risk of inheriting HD have generations of experience of HD, but may be unaware of recent breakthroughs in understanding the disease, and of the availability of genetic testing. Genetic counseling benefits these individuals by updating their knowledge, seeking to dispel any unfounded beliefs that they may have, and helping them consider their future options and plans. Also covered is information concerning family planning choices, care management, and other considerations.
Gilbert's syndrome and G6PD deficiency occurring together especially increases the risk for kernicterus.
2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in ones urine. It is either autosomal recessive or autosomal dominant.
Niemann–Pick disease ( ) is a group of inherited, severe metabolic disorders in which sphingomyelin accumulates in lysosomes in cells. The lysosomes normally transport material through and out of the cell.
This disease involves dysfunctional metabolism of sphingolipids, which are fats found in cell membranes, so it is a kind of sphingolipidosis. Sphingolipidoses, in turn, are included in the larger family of lysosomal storage diseases.
Surgery, such as the denervation of selected muscles, may also provide some relief; however, the destruction of nerves in the limbs or brain is not reversible and should be considered only in the most extreme cases. Recently, the procedure of deep brain stimulation (DBS) has proven successful in a number of cases of severe generalised dystonia. DBS as treatment for medication-refractory dystonia, on the other hand, may increase the risk of suicide in patients. However, reference data of patients without DBS therapy are lacking.
Exercise in middle age may reduce the risk of Parkinson's disease later in life. Caffeine also appears protective with a greater decrease in risk occurring with a larger intake of caffeinated beverages such as coffee. People who smoke cigarettes or use smokeless tobacco are less likely than non-smokers to develop PD, and the more they have used tobacco, the less likely they are to develop PD. It is not known what underlies this effect. Tobacco use may actually protect against PD, or it may be that an unknown factor both increases the risk of PD and causes an aversion to tobacco or makes it easier to quit using tobacco.
Antioxidants, such as vitamins C and E, have been proposed to protect against the disease, but results of studies have been contradictory and no positive effect has been proven. The results regarding fat and fatty acids have been contradictory, with various studies reporting protective effects, risk-increasing effects or no effects. There have been preliminary indications that the use of anti-inflammatory drugs and calcium channel blockers may be protective. A 2010 meta-analysis found that nonsteroidal anti-inflammatory drugs (apart from aspirin), have been associated with at least a 15 percent (higher in long-term and regular users) reduction of incidence of the development of Parkinson's disease.