Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several studies have shown that hypopituitarism is associated with an increased risk of cardiovascular disease and some also an increased risk of death of about 50% to 150% the normal population. It has been difficult to establish which hormone deficiency is responsible for this risk, as almost all patients studied had growth hormone deficiency. The studies also do not answer the question as to whether the hypopituitarism itself causes the increased mortality, or whether some of the risk is to be attributed to the treatments, some of which (such as sex hormone supplementation) have a recognized adverse effect on cardiovascular risk.
The largest study to date followed over a thousand people for eight years; it showed an 87% increased risk of death compared to the normal population. Predictors of higher risk were: female sex, absence of treatment for sex hormone deficiency, younger age at the time of diagnosis, and a diagnosis of craniopharyngioma. Apart from cardiovascular disease, this study also showed an increased risk of death from lung disease.
Quality of life may be significantly reduced, even in those people on optimum medical therapy. Many report both physical and psychological problems. It is likely that the commonly used replacement therapies do not completely mimic the natural hormone levels in the body. Health costs remain about double those of the normal population.
Hypopituitarism is usually permanent. It requires lifelong treatment with one or more medicines.
There is only one study that has measured the prevalence (total number of cases in a population) and incidence (annual number of new cases) of hypopituitarism. This study was conducted in Northern Spain and used hospital records in a well-defined population. The study showed that 45.5 people out of 100,000 had been diagnosed with hypopituitarism, with 4.2 new cases per year. 61% were due to tumors of the pituitary gland, 9% due to other types of lesions, and 19% due to other causes; in 11% no cause could be identified.
Recent studies have shown that people with a previous traumatic brain injury, spontaneous subarachnoid hemorrhage (a type of stroke) or radiation therapy involving the head have a higher risk of hypopituitarism. After traumatic brain injury, as much as a quarter have persistent pituitary hormone deficiencies. Many of these people may have subtle or non-specific symptoms that are not linked to pituitary problems but attributed to their previous condition. It is therefore possible that many cases of hypopituitarism remain undiagnosed, and that the annual incidence would rise to 31 per 100,000 annually if people from these risk groups were to be tested.
All causes in this category are genetic, and generally very rare. These include mutations to the "SF1" transcription factor, congenital adrenal hypoplasia due to "DAX-1" gene mutations and mutations to the ACTH receptor gene (or related genes, such as in the Triple A or Allgrove syndrome). "DAX-1" mutations may cluster in a syndrome with glycerol kinase deficiency with a number of other symptoms when "DAX-1" is deleted together with a number of other genes.
Iatrogenic Cushing's syndrome (caused by treatment with corticosteroids) is the most common form of Cushing's syndrome. Cushing's disease is rare; a Danish study found an incidence of less than one case per million people per year. However, asymptomatic microadenomas (less than 10 mm in size) of the pituitary are found in about one in six individuals.
People with Cushing's syndrome have increased morbidity and mortality as compared to the general population. The most common cause of mortality in Cushing's syndrome is cardiovascular events. People with Cushing's syndrome have nearly 4 times increased cardiovascular mortality as compared to the general population.
Causes of acute adrenal insufficiency are mainly sudden withdrawal of long-term corticosteroid therapy, Waterhouse-Friderichsen syndrome, and stress in people with underlying chronic adrenal insufficiency. The latter is termed critical illness–related corticosteroid insufficiency.
For chronic adrenal insufficiency, the major contributors are autoimmune adrenalitis (Addison's Disease), tuberculosis, AIDS, and metastatic disease. Minor causes of chronic adrenal insufficiency are systemic amyloidosis, fungal infections, hemochromatosis, and sarcoidosis.
Autoimmune adrenalitis may be part of Type 2 autoimmune polyglandular syndrome, which can include type 1 diabetes, hyperthyroidism, and autoimmune thyroid disease (also known as autoimmune thyroiditis, Hashimoto's thyroiditis, and Hashimoto's disease). Hypogonadism may also present with this syndrome. Other diseases that are more common in people with autoimmune adrenalitis include premature ovarian failure, celiac disease, and autoimmune gastritis with pernicious anemia.
Adrenoleukodystrophy can also cause adrenal insufficiency.
Adrenal insufficiency can also result when a patient has a craniopharyngioma, which is a histologically benign tumor that can damage the pituitary gland and so cause the adrenal glands not to function. This would be an example of secondary adrenal insufficiency syndrome.
Causes of adrenal insufficiency can be categorized by the mechanism through which they cause the adrenal glands to produce insufficient cortisol. These are adrenal dysgenesis (the gland has not formed adequately during development), impaired steroidogenesis (the gland is present but is biochemically unable to produce cortisol) or adrenal destruction (disease processes leading to glandular damage).
Outcomes are typically good when treated. Most can expect to live relatively normal lives. Someone with the disease should be observant of symptoms of an "Addison's crisis" while the body is strained, as in rigorous exercise or being sick, the latter often needing emergency treatment with intravenous injections to treat the crisis.
Individuals with Addison's disease have more than a doubled mortality rate. Furthermore, individuals with Addison's disease and diabetes mellitus have an almost 4 time increase in mortality compared to individuals with only diabetes.
In a study of 1,034 symptomatic adults, Sheehan syndrome was found to be the sixth most frequent etiology of growth hormone deficiency, being responsible for 3.1% of cases (versus 53.9% due to a pituitary tumor).
The frequency rate of Addison's disease in the human population is sometimes estimated at roughly one in 100,000. Some put the number closer to 40–144 cases per million population (1/25,000–1/7,000). Addison's can affect persons of any age, sex, or ethnicity, but it typically presents in adults between 30 and 50 years of age. Research has shown no significant predispositions based on ethnicity.
Cases of Cushing's disease are rare, and little epidemiological data is available on the disease. An 18-year study conducted on the population of Vizcaya, Spain reported a 0.004% prevalence of Cushing's disease. The average incidence of newly diagnosed cases was 2.4 cases per million inhabitants per year. The disease is often diagnosed 3–6 years after the onset of illness.
Several studies have shown that Cushing's disease is more prevalent in women than men at a ratio of 3-6:1, respectively. Moreover, most women affected were between the ages of 50 and 60 years.
The prevalence of hypertension, and abnormalities in glucose metabolism are major predictors of mortality and morbidity in untreated cases of the disease. The mortality rate of Cushing's disease was reported to be 10-11%, with the majority of deaths due to vascular disease Women aged 45–70 years have a significantly higher mortality rate than men.
Moreover, the disease shows a progressive increase with time. Reasons for the trend are unknown, but better diagnostic tools, and a higher incidence rate are two possible explanations.
The most common cause of Cushing's syndrome is the taking of glucocorticoids prescribed by a health care practitioner to treat other diseases (called iatrogenic Cushing's syndrome). This can be an effect of corticosteroid treatment of a variety of disorders such as asthma and rheumatoid arthritis, or in immunosuppression after an organ transplant. Administration of synthetic ACTH is also possible, but ACTH is less often prescribed due to cost and lesser utility. Although rare, Cushing's syndrome can also be due to the use of medroxyprogesterone acetate. In this form of Cushing's, the adrenal glands atrophy due to lack of stimulation by ACTH, since glucocorticoids downregulate production of ACTH. Cushing's syndrome in childhood usually results from use of glucocorticoid medication.
Endogenous Cushing's syndrome results from some derangement of the body's own system of secreting cortisol. Normally, ACTH is released from the pituitary gland when necessary to stimulate the release of cortisol from the adrenal glands.
- In pituitary Cushing's, a benign pituitary adenoma secretes ACTH. This is also known as Cushing's disease and is responsible for 70% of endogenous Cushing's syndrome.
- In adrenal Cushing's, excess cortisol is produced by adrenal gland tumors, hyperplastic adrenal glands, or adrenal glands with nodular adrenal hyperplasia.
- Tumors outside the normal pituitary-adrenal system can produce ACTH (occasionally with CRH) that affects the adrenal glands. This etiology is called ectopic or paraneoplastic Cushing's disease and is seen in diseases such as small cell lung cancer.
- Finally, rare cases of CRH-secreting tumors (without ACTH secretion) have been reported, which stimulates pituitary ACTH production.
Growth hormone-releasing hormone (GHRH) is another releasing factor secreted by the hypothalamus. GHRH stimulates the pituitary gland to secrete growth hormone (GH), which has various effects on body growth and sexual development. Insufficient GH production may cause poor somatic growth, precocious puberty or gonadotropin deficiency, failure to initiate or complete puberty, and is often associated with rapid weight gain, low T, and low levels of sex hormones.
Most XY children are so undervirilized that they are raised as girls. The testes are uniformly nonfunctional and undescended; they are removed when the diagnosis is made due to the risk of cancer development in these tissues.
Adrenal gland disorders (or diseases) are conditions that interfere with the normal functioning of the adrenal glands. Adrenal disorders may cause hyperfunction or hypofunction, and may be congenital or acquired.
The adrenal gland produces hormones that affects growth, development and stress, and also helps to regulate kidney function. There are two parts of the adrenal glands, the adrenal cortex and the adrenal medulla. The adrenal cortex produces mineralocorticoids, which regulate salt and water balance within the body, glucocorticoids (including cortisol) which have a wide number of roles within the body, and androgens, hormones with testosterone-like function. The adrenal medulla produces epinephrine (adrenaline) and norepinephrine (noradrenaline). Disorders of the adrenal gland may affect the production of one or more of these hormones.
The condition is due to:
- Bilateral idiopathic (micronodular) adrenal hyperplasia (66%)
- Adrenal adenoma (Conn's syndrome) (33%)
- Primary (unilateral) adrenal hyperplasia—2% of cases
- Aldosterone-producing adrenocortical carcinoma—<1% of cases
- Familial Hyperaldosteronism (FH)
- Glucocorticoid-remediable aldosteronism (FH type I)—<1% of cases
- FH type II (APA or IHA)—<2% of cases
- Ectopic aldosterone-producing adenoma or carcinoma—< 0.1% of cases
Drug induced (iatrogenic) hypoadrenocorticism is caused during abrupt cessation of a steroid medication. During steroid treatment, the adrenal glands do not function fully. The body senses the levels of the exogenous steroids in the system and therefore does not signal for additional production. The usual protocol for stopping steroid medications is not to eliminate them suddenly, but to withdraw from them gradually in a "tapering off" process, which allows the production to adjust to normal. If steroids are abruptly withdrawn, the dormant adrenal glands may not able to reactivate, and the body will need to have its adrenal glucocorticoid hormones replaced by medication.
Sheehan's syndrome, also known as postpartum pituitary gland necrosis, is hypopituitarism (decreased functioning of the pituitary gland), caused by ischemic necrosis due to blood loss and hypovolemic shock during and after childbirth.
Lipoid CAH is quite rare in European and North American populations. Most cases occur in Japan and Korea (where the incidence is 1 in 300,000 births) and Palestinian Arabs. Despite autosomal inheritance, there has been an unexplained preponderance of genetic females in reported cases.
Cushing's disease is a cause of Cushing's syndrome characterised by increased secretion of adrenocorticotropic hormone (ACTH) from the anterior pituitary (secondary hypercortisolism). This is most often as a result of a pituitary adenoma (specifically pituitary basophilism) or due to excess production of hypothalamus CRH (corticotropin releasing hormone) (tertiary hypercortisolism/hypercorticism) that stimulates the synthesis of cortisol by the adrenal glands. Pituitary adenomas are responsible for 80% of endogenous Cushing's syndrome, when excluding Cushing's syndrome from exogenously administered corticosteroids.
This should not be confused with ectopic Cushing syndrome or exogenous steroid use.
The thyroid gland is an auxiliary organ to the hypothalamus-pituitary system. Thyrotropin-releasing hormone (TRH) produced by the hypothalamus signals to the pituitary to release thyroid-stimulating hormone (TSH), which then stimulates the thyroid to secrete T and T thyroid hormones. Secondary hypothyroidism occurs when TSH secretion from the pituitary is impaired, whereas tertiary hypothyroidism is the deficiency or inhibition of TRH.
Thyroid hormones are responsible for metabolic activity. Insufficient production of the thyroid hormones result in suppressed metabolic activity and weight gain. Hypothalamic disease may therefore have implications for obesity.
In secondary hypoadrenocorticism (also known as atypical hypoadrenocorticism) the problem is not in the adrenal gland but in the pituitary gland. Usually, the anterior portion of the pituitary gland produces a hormone, adrenocorticotropic hormone (ACTH), that signals the zona fasciculata and zona reticularis to produce their steroids. When the pituitary is unable to produce ACTH, these zones stop production of their hormones. The zona glomerulosa is not controlled by ACTH, and remains able to produce a normal amount of mineralocorticoids. A dog with secondary hypoadrenocorticism is not at risk of an Addisonian crisis, and only needs to have medication to replace the glucocorticoid steroid cortisol. One dog in every 42 diagnosed with hypoadrenocorticism has the secondary form of the disease where mineralocorticoid production remains intact.
Secondary adrenocortical insufficiency involves only a deficiency of glucocorticoid secretion. Destructive lesions (e.g. neoplasia, inflammation) in the pituitary gland or hypothalamus and chronic administration of exogenous glucocorticoids or megestrol acetate (cats) are the most common causes.
In some dogs with secondary hypoadrenocorticism, the disease progresses to primary hypoadrenocorticism, and mineralocorticoid replacement becomes necessary, while others retain their ability to continue production of mineralocorticoids for years, requiring glucocorticoid replacement only.
In larger case series, the mortality was 1.6% overall. In the group of patients who were unwell enough to require surgery, the mortality was 1.9%, with no deaths in those who could be treated conservatively.
After an episode of pituitary apoplexy, 80% of people develop hypopituitarism and require some form of hormone replacement therapy. The most common problem is growth hormone deficiency, which is often left untreated but may cause decreased muscle mass and strength, obesity and fatigue. 60–80% require hydrocortisone replacement (either permanently or when unwell), 50–60% need thyroid hormone replacement, and 60–80% of men require testosterone supplements. Finally, 10–25% develop diabetes insipidus, the inability to retain fluid in the kidneys due to a lack of the pituitary antidiuretic hormone. This may be treated with the drug desmopressin, which can be applied as a nose spray or taken by mouth.
Almost all cases of pituitary apoplexy arise from a pituitary adenoma, a benign tumor of the pituitary gland. In 80%, the patient has been previously unaware of this (although some will retrospectively report associated symptoms). It was previously thought that particular types of pituitary tumors were more prone to apoplexy than others, but this has not been confirmed. In absolute terms, only a very small proportion of pituitary tumors eventually undergoes apoplexy. In an analysis of incidentally found pituitary tumors, apoplexy occurred in 0.2% annually, but the risk was higher in tumors larger than 10 mm ("macroadenomas") and tumors that were growing more rapidly; in a meta-analysis, not all these associations achieved statistical significance.
The majority of cases (60–80%) are not precipitated by a particular cause. A quarter has a history of high blood pressure, but this is a common problem in the general population, and it is not clear whether it significantly increase the risk of apoplexy. A number of cases has been reported in association with particular conditions and situations; it is uncertain whether these were in fact causative. Amongst reported associations are surgery (especially coronary artery bypass graft, where there are significant fluctuations in the blood pressure), disturbances in blood coagulation or medication that inhibits coagulation, radiation therapy to the pituitary, traumatic brain injury, pregnancy (during which the pituitary enlarges) and treatment with estrogens. Hormonal stimulation tests of the pituitary have been reported to provoke episodes. Treatment of prolactinomas (pituitary adenomas that secrete prolactin) with dopamine agonist drugs, as well as withdrawal of such treatment, has been reported to precipitate apoplexy.
Hemorrhage from a Rathke's cleft cyst, a remnant of Rathke's pouch that normally regresses after embryological development, may cause symptoms that are indistinguishable from pituitary apoplexy. Pituitary apoplexy is regarded by some as distinct from Sheehan's syndrome, where the pituitary undergoes infarction as a result of prolonged very low blood pressure, particularly when caused by bleeding after childbirth. This condition usually occurs in the absence of a tumor. Others regard Sheehan's syndrome as a form of pituitary apoplexy.
Most affected cats are over 10 years old. No breed or sex is predisposed to hyperadlosteronism.
Prolactin secretion in the pituitary is normally suppressed by the brain chemical dopamine. Drugs that block the effects of dopamine at the pituitary or deplete dopamine stores in the brain may cause the pituitary to secrete prolactin. These drugs include the major tranquillizers (phenothiazines), trifluoperazine (Stelazine), and haloperidol (Haldol); antipsychotic medications, such as risperidone and quetiapine; metoclopramide (Reglan), domperidone, cisapride used to treat gastro-oesophageal reflux; medication-induced nausea (such as cancer drugs); and, less often, alpha-methyldopa and reserpine, used to control hypertension; and estrogens and TRH. The sleep drug ramelteon (Rozerem) also increases the risk of hyperprolactinaemia. A benzodiazepine analog, etizolam, can also increase the risk of hyperprolactinaemia. In particular, the dopamine antagonists metoclopramide and domperidone are both powerful prolactin stimulators and have been used to stimulate breast milk secretion for decades. However, since prolactin is antagonized by dopamine and the body depends on the two being in balance, the risk of prolactin stimulation is generally present with all drugs that deplete dopamine, either directly or as a rebound effect.
Worldwide about one billion people are estimated to be iodine deficient; however, it is unknown how often this results in hypothyroidism. In large population-based studies in Western countries with sufficient dietary iodine, 0.3–0.4% of the population have overt hypothyroidism. A larger proportion, 4.3–8.5%, have subclinical hypothyroidism. Of people with subclinical hypothyroidism, 80% have a TSH level below the 10 mIU/l mark regarded as the threshold for treatment. Children with subclinical hypothyroidism often return to normal thyroid function, and a small proportion develops overt hypothyroidism (as predicted by evolving antibody and TSH levels, the presence of celiac disease, and the presence of a goiter).
Women are more likely to develop hypothyroidism than men. In population-based studies, women were seven times more likely than men to have TSH levels above 10 mU/l. 2–4% of people with subclinical hypothyroidism will progress to overt hypothyroidism each year. The risk is higher in those with antibodies against thyroid peroxidase. Subclinical hypothyroidism is estimated to affect approximately 2% of children; in adults, subclinical hypothyroidism is more common in the elderly, and in Caucasians. There is a much higher rate of thyroid disorders, the most common of which is hypothyroidism, in individuals with Down syndrome and Turner syndrome.
Very severe hypothyroidism and myxedema coma are rare, with it estimated to occur in 0.22 per million people a year. The majority of cases occur in women over 60 years of age, although it may happen in all age groups.
Most hypothyroidism is primary in nature. Central/secondary hypothyroidism affects 1:20,000 to 1:80,000 of the population, or about one out of every thousand people with hypothyroidism.