Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Pheochromocytoma is seen in between two and eight in 1,000,000, with approximately 1000 cases diagnosed in United States yearly. It mostly occurs in young or middle age adults, though it presents earlier in hereditary cases.
- About 10% of adrenal cases are bilateral (suggesting hereditary disease)
- About 10% of adrenal cases occur in children (also suggesting hereditary disease)
- About 15% are extra-adrenal (located in any orthosympathetic tissue): Of these 9% are in the abdomen, and 1% are located elsewhere. Some extra-adrenal pheochromocytomas are probably actually paragangliomas, but the distinction can only be drawn after surgical resection.
- About 11.1% of adrenal cases are malignant, but this rises to 30% for extra-adrenal cases
- About 15–20% are hereditary
- About 5% are caused by VHL disease
- About 3% recur after being resected
- About 14% of affected individuals do not have arterial hypertension (Campbell's Urology)
The massive release of catecholamines in pheochromocytoma can cause damage to heart cells. This damage may be due to either compromising the coronary microcirculation or by direct toxic effects on the heart cells.
An endocrine gland neoplasm is a neoplasm affecting one or more glands of the endocrine system.
Examples include:
- Adrenal tumor
- Pituitary adenoma
The most common form is thyroid cancer.
Condition such as pancreatic cancer or ovarian cancer can be considered endocrine tumors, or classified under other systems.
Pinealoma is often grouped with brain tumors because of its location.
SCTC exhibits a highly aggressive phenotype, thus prognosis of that malignancy is extremely poor. The overall survival is less than 1 year in most of cases.
An adrenal tumor or adrenal mass is any benign or malignant neoplasms of the adrenal gland, several of which are notable for their tendency to overproduce endocrine hormones. Adrenal cancer is the presence of malignant adrenal tumors, and includes neuroblastoma, adrenocortical carcinoma and some adrenal pheochromocytomas. Most adrenal pheochromocytomas and all adrenocortical adenomas are benign tumors, which do not metastasize or invade nearby tissues, but may cause significant health problems by unbalancing hormones.
ACC, generally, carries a poor prognosis and is unlike most tumours of the adrenal cortex, which are benign (adenomas) and only occasionally cause Cushing's syndrome. Five-year disease-free survival for a complete resection of a stage I–III ACC is approximately 30%.
The most important prognostic factors are age of the patient and stage of the tumor.
Poor prognostic factors: mitotic activity, venous invasion, weight of 50g+; diameter of 6.5 cm+, Ki-67/MIB1 labeling index of 4%+, p53+.
Adrenocortical carcinoma (ACC, adrenal cortical carcinoma, adrenal cortical cancer, adrenal cortex cancer, etc.) is an aggressive cancer originating in the cortex (steroid hormone-producing tissue) of the adrenal gland. Adrenocortical carcinoma is a rare tumor, with incidence of 1–2 per million population annually. Adrenocortical carcinoma has a bimodal distribution by age, with cases clustering in children under 5, and in adults 30–40 years old. Adrenocortical carcinoma is remarkable for the many hormonal syndromes which can occur in patients with steroid hormone-producing ("functional") tumors, including Cushing's syndrome, Conn syndrome, virilization, and feminization. Adrenocortical carcinoma has often invaded nearby tissues or metastasized to distant organs at the time of diagnosis, and the overall 5-year survival rate is only 20–35%. The widely used angiotensin-II-responsive steroid-producing cell line H295R was originally isolated from a tumor diagnosed as adrenocortical carcinoma.
The adrenal cortex is composed of three distinct layers of endocrine cells which produce critical steroid hormones. These include the glucocorticoids which are critical for regulation of blood sugar and the immune system, as well as response to physiological stress, the mineralcorticoid aldosterone, which regulates blood pressure and kidney function, and certain sex hormones. Both benign and malignant tumors of the adrenal cortex may produce steroid hormones, with important clinical consequences.
A parathyroid neoplasm is a tumor of the parathyroid gland.
Types include:
- Parathyroid adenoma
- Parathyroid carcinoma
This is a very rare tumor, since only about 1 in 35,000 to 40,000 people have VHL, of whom about 10% have endolymphatic sac tumors. Patients usually present in the 4th to 5th decades without an gender predilection. The tumor involves the endolymphatic sac, a portion of the intraosseous inner ear of the posterior petrous bone.
Myelolipomas are rare. They have been reported to be found unexpectedly at autopsy in 0.08% to 0.4% of cases ("i.e.:" somewhere between 8 per 10,000 and 4 per 1,000 autopsies). They most commonly occur in the adrenal gland, yet only comprise about 3% of all adrenal tumours. They may also occur in other sites, such as the mediastinum, the liver and the gastrointestinal tract.
There is no gender predilection, males and females are affected equally. The peak age range at diagnosis is between 40 and 79 years of age.
A adrenocortical adenoma (or adrenal cortical adenoma, or sometimes simply adrenal adenoma) is a benign tumor of the adrenal cortex.
It can present with Cushing's syndrome or primary aldosteronism. They may also secrete androgens, causing hyperandrogenism. Also, they are often diagnosed incidentally as incidentalomas.
Is a well circumscribed, yellow tumour in the adrenal cortex, which is usually 2–5 cm in diameter. The color of the tumour, as with adrenal cortex as a whole, is due to the stored lipid (mainly cholesterol), from which the cortical hormones are synthesized. These tumors are frequent incidental findings at post mortem examination, and appear to have produced no significant metabolic disorder; only a very small percentage lead to Cushing's syndrome. Nevertheless, these apparently non-functioning adenomas are most often encountered in elder obese people. There is some debate that they may really represent nodules in diffuse nodular cortical hyperplasia.
Very occasionally, a true adrenal cortical adenoma is associated with the clinical manifestations of Conn's syndrome, and can be shown to be excreting mineralocorticoids.
Glandular and epithelial neoplasm is a grouping of tumors arising from the glands and epithelium.
An example is adenoma.
According to a Dutch source juvenile pilocytic astrocytoma occurs at a rate of 2 in 100,000 people. Most affected are children ages 5–14 years. According to the National Cancer Institute more than 80% of astrocytomas located in the cerebellum are low grade (pilocytic grade I) and often cystic; most of the remainder are diffuse grade II astrocytomas.
Tumors of the optic pathway account for 3.6-6% of pediatric brain tumors, 60% of which are juvenile pilocytic astrocytomas. Astrocytomas account for 50% of pediatric primary central nervous system tumors. About 80-85% of cerebellar astrocytomas are juvenile pilocytic astrocytomas.
Recent genetic studies of pilocytic astrocytomas show that some sporadic cases have gain in chromosome 7q34 involving the BRAF locus.
Thyroid neoplasm is a neoplasm or tumor of the thyroid. It can be a benign tumor such as thyroid adenoma, or it can be a malignant neoplasm (thyroid cancer), such as papillary, follicular, medullary or anaplastic thyroid cancer. Most patients are 25 to 65 years of age when first diagnosed; women are more affected than men. The estimated number of new cases of thyroid cancer in the United States in 2010 is 44,670 compared to only 1,690 deaths. Of all thyroid nodules discovered, only about 5 percent are cancerous, and under 3 percent of those result in fatalities.
Paragangliomas originate from paraganglia in chromaffin-negative glomus cells derived from the embryonic neural crest, functioning as part of the sympathetic nervous system (a branch of the autonomic nervous system). These cells normally act as special chemoreceptors located along blood vessels, particularly in the carotid bodies (at the bifurcation of the common carotid artery in the neck) and in aortic bodies (near the aortic arch).
Accordingly, paragangliomas are categorised as originating from a neural cell line in the World Health Organization classification of neuroendocrine tumors. In the categorization proposed by Wick, paragangliomas belong to group II. Given the fact that they originate from cells of the orthosympathetic system, paragangliomas are closely related to pheochromocytomas, which however are chromaffin-positive.
A paraganglioma is a rare neuroendocrine neoplasm that may develop at various body sites (including the head, neck, thorax and abdomen). Unlike other types of cancer, there is no test that determines benign from malignant tumors; long-term followup is therefore recommended for all individuals with paraganglioma. Approximately 50% of patients with recurrent disease experience distant metastasis. The five-year survival in the setting of metastatic disease is 40% to 45%.
The majority of myelolipomas are asymptomatic. Most do not produce any adrenal hormones. Most are only discovered as a result of investigation for another problem.
When myelolipomas do produce symptoms, it is usually because they have become large, and are pressing on other organs or tissues nearby. Symptoms include pain in the abdomen or , blood in the urine, a palpable lump or high blood pressure.
As they are benign tumors, myelolipomas do not spread to other body parts. Larger myelolipomas are at risk of localised tissue death and bleeding, which may cause a retroperitoneal haemorrhage.
Thyroidectomy and neck dissection show good results in early stages of SCTC. However, due to highly aggressive phenotype, surgical treatment is not always possible. The SCTC is a radioiodine-refractory tumor. Radiotherapy might be effective in certain cases, resulting in relatively better survival rate and quality of life. Vincristine, Adriamycin, and bleomycin are used for adjuvant chemotherapy, but their effects are not good enough according to published series.
An endolymphatic sac tumor is a very uncommon papillary epithelial neoplasm arising within the endolymphatic sac or endolymphatic duct. This tumor shows a very high association with von Hippel-Lindau syndrome (VHL).
Pancreatic serous cystadenoma, also known as serous cystadenoma of the pancreas and serous microcystic adenoma, a benign tumour of pancreas. It is usually found in the head of the pancreas, and may be associated with von Hippel-Lindau syndrome.
In contrast to some of the other cyst-forming tumors of the pancreas (such as the intraductal papillary mucinous neoplasm and the mucinous cystic neoplasm), serous cystic neoplasms are almost always entirely benign. There are some exceptions; rare case reports have described isolated malignant serous cystadenocarcinomas. In addition, serous cystic neoplasms slowly grow, and if they grow large enough they can press on adjacent organs and cause symptoms.
A neoplasm can be caused by an abnormal proliferation of tissues, which can be caused by genetic mutations. Not all types of neoplasms cause a tumorous overgrowth of tissue, however (such as leukemia or carcinoma in situ).
Recently, tumor growth has been studied using mathematics and continuum mechanics. Vascular tumors (formed from blood vessels) are thus looked at as being amalgams of a solid skeleton formed by sticky cells and an organic liquid filling the spaces in which cells can grow. Under this type of model, mechanical stresses and strains can be dealt with and their influence on the growth of the tumor and the surrounding tissue and vasculature elucidated. Recent findings from experiments that use this model show that active growth of the tumor is restricted to the outer edges of the tumor, and that stiffening of the underlying normal tissue inhibits tumor growth as well.
Benign conditions that are "not" associated with an abnormal proliferation of tissue (such as sebaceous cysts) can also present as tumors, however, but have no malignant potential. Breast cysts (as occur commonly during pregnancy and at other times) are another example, as are other encapsulated glandular swellings (thyroid, adrenal gland, pancreas).
Encapsulated hematomas, encapsulated necrotic tissue (from an insect bite, foreign body, or other noxious mechanism), keloids (discrete overgrowths of scar tissue) and granulomas may also present as tumors.
Discrete localized enlargements of normal structures (ureters, blood vessels, intrahepatic or extrahepatic biliary ducts, pulmonary inclusions, or gastrointestinal duplications) due to outflow obstructions or narrowings, or abnormal connections, may also present as a tumor. Examples are arteriovenous fistulae or aneurysms (with or without thrombosis), biliary fistulae or aneurysms, sclerosing cholangitis, cysticercosis or hydatid cysts, intestinal duplications, and pulmonary inclusions as seen with cystic fibrosis. It can be dangerous to biopsy a number of types of tumor in which the leakage of their contents would potentially be catastrophic. When such types of tumors are encountered, diagnostic modalities such as ultrasound, CT scans, MRI, angiograms, and nuclear medicine scans are employed prior to (or during) biopsy or surgical exploration/excision in an attempt to avoid such severe complications.
The nature of a tumor is determined by imaging, by surgical exploration, or by a pathologist after examination of the tissue from a biopsy or a surgical specimen.
PPNAD, the endocrine manifestation that comes from Carney Complex (CNC), can be syndromic or isolated. The main cause of isolated PPNAD is a mutation of PRKAR1α, located at 17q22-24, which is the gene encoding the regulatory R1α subunit of protein kinase A. Germline heterozygous PRKAR1α inactivation mutations are present in 80% of CNC patients affected by Cushing's syndrome. There are over 117 mutations of the PRKAR1α gene that can cause CNC, with many of these mutations producing premature stop codons, thus resulting in the complete loss of PRKAR1α protein. CNC patients have also been discovered with an unusually shortened PRKAR1α protein, detected in tumours and leukocytes, following a splice-site mutation, which causes exon-6 skipping. Therefore, both haploinsufficiency and the complete loss of PRKAR1α can lead to the increased PKA activity observed in PPNAD patients, due to the disruption of the cAMP signalling pathway.
Sahut-Barnola et al. used a mouse model to cre-lox knockout the Prkar1a gene specifically from cells of the adrenal cortex and observed that the mice subsequently developed Cushing syndrome that is independent of the pituitary. They also observed that the mutation caused increased PKA activity.
The R1α loss caused the adult adrenal gland became hyperactive and hyperplastic on both sides, as seemingly the foetal adrenal cells within it were not maintained and thus expanded. This established tumoral growths. This mouse KO model phenocopies what happens in human cases of PPNAD.
Inactivation of PDE11A4, located at 2q31-5, has also been identified in PPNAD patients without PRKAR1α mutations. PDE11A4 is the gene encoding phosphodiesterase 11A4, another participant of the cAMP signalling pathway.
Thyroid adenoma is a benign neoplasm of the thyroid. Thyroid nodules are very common and around 80 percent of adults will have at least one by the time they reach 70 years of age. Approximately 90 to 95 percent of all nodules are found to be benign.
Primary pigmented nodular adrenocortical disease (PPNAD) was first coined in 1984 by Carney et al. it often occurs in association with Carney complex (CNC). CNC is a rare syndrome that involves the formation of abnormal tumours that cause endocrine hyperactivity.
PPNAD arises due to the enlargement of the cortex of the adrenal glands, resulting in Cushing's syndrome that is independent of the pituitary hormone ACTH.