Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
It is associated with cathepsin A.This disease is due to mutations in the CTSA gene which encodes the protective protein/cathepsin A (PPCA). This in turn leads to a secondary deficiency of beta-galactosidase (GLB1) and neuraminidase 1 (NEU1).There are three distinct CTSA isoforms.
The GM1 gangliosidoses (or GM1 gangliosidos"i"s) are caused by a deficiency of beta-galactosidase, with resulting abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells.
GM1 Gangliosidoses are inherited, autosomal recessive sphingolipidoses, resulting from marked deficiency of Acid Beta Galactosidase.
A prenatal diagnosis was made by Kleijer et al. in 1979 by measuring beta-galactosidase and neuraminidase activities in cultured amniotic fluid cells.
Onset of adult GM1 is between ages 3 and 30.
Symptoms include muscle atrophy, neurological complications that are less severe and progress at a slower rate than in other forms of the disorder, corneal clouding in some patients, and dystonia (sustained muscle contractions that cause twisting and repetitive movements or abnormal postures). Angiokeratomas may develop on the lower part of the trunk of the body. Most patients have a normal size liver and spleen.
Prenatal diagnosis is possible by measurement of Acid Beta Galactosidase in cultured amniotic cells.
The human GALK1 gene contains 8 exons and spans approximately 7.3 kb of genomic DNA. The GALK1 promoter was found to have many features in common with other housekeeping genes, including high GC content, several copies of the binding site for the Sp1 transcription factor and the absence of TATA-box and CCAAT-box motifs typically present in eukaryotic polymerase II promoters. Analysis by 5-prime-RACE PCR indicated that the GALK1 mRNA is heterogeneous at the 5-prime end, with transcription sites occurring at many locations between 21 and 61 bp upstream of the ATG start site of the coding region. In vitro translation experiments of the GALK1 cDNA indicated that the protein is cytosolic and not associated with endoplasmic reticulum membrane.
Galactokinase deficiency is an autosomal recessive disorder, which means the defective gene responsible for the disorder is located on an autosome (chromosome 17 is an autosome), and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
Unlike galactose-1-phosphate uridyltransferase deficiency, the symptoms of galactokinase deficiency are relatively mild. The only known symptom in affected children is the formation of cataracts, due to production of galactitol in the lens of the eye. Cataracts can present as a failure to develop a social smile and failure to visually track moving objects.
Ornithine aminotransferase deficiency (also known as gyrate atrophy of the choroid and retina) is an inborn error of ornithine metabolism, caused by decreased activity of the enzyme ornithine aminotransferase. Biochemically, it can be detected by elevated levels of ornithine in the blood. Clinically, it presents initially with poor night vision, which slowly progresses to total blindness. It is believed to be inherited in an autosomal recessive manner. Approximately 200 known cases have been reported in the literature. The incidence is highest in Finland, estimated at 1:50,000.
Research suggests there can be some adverse effect on muscles and also the brain. The cause of this is somewhat unclear but may relate to very low levels of creatine often found in this population.
Tratement may include vitamin B6, Lysine or dramatic dietary change to minimise Arginine from patients diet. Research has indicated that these treatments may be somewhat effective in lowering ornathine blood concerntration levels in some patients, either in combination or individually. Vitamin B6 has been found to be very effective in a small proportion of patients.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
Enolase Deficiency is a rare genetic disorder of glucose metabolism. Partial deficiencies have been observed in several caucasian families. The deficiency is transmitted through an autosomal dominant inheritance pattern. The gene for Enolase 1 has been localized to Chromosome 1 in humans. Enolase deficiency, like other glycolytic enzyme deficiences, usually manifests in red blood cells as they rely entirely on anaerobic glycolysis. Enolase deficiency is associated with a spherocytic phenotype and can result in hemolytic anemia, which is responsible for the clinical signs of Enolase deficiency.
OAT deficiency is inherited in an autosomal recessive manner, meaning an affected individual must inherit a mutated allele from both parents. The enzyme, ornithine aminotransferase is coded for by the gene "OAT", located at 10q26. OAT deficiency has an increased incidence in Finland, and this population has a common mutation accounting for more than 85% of mutant alleles in this population. It has not been described in any other populations.
Saccharopinuria (an excess of saccharopine in the urine), also called saccharopinemia, saccharopine dehydrogenase deficiency or alpha-aminoadipic semialdehyde synthase deficiency, is a variant form of hyperlysinemia. It is caused by a partial deficiency of the enzyme saccharopine dehydrogenase, which plays a secondary role in the lysine metabolic pathway. Inheritance is thought to be autosomal recessive, but this cannot be established as individuals affected by saccharopinuria typically have only a 40% reduction in functional enzyme.
Children with DOCK8 deficiency do not tend to live long; sepsis is a common cause of death at a young age. CNS and vascular complications are other common causes of death.
The disorder is caused by a mutation in the "ACADSB" gene, located on the long arm of human chromosome 10 (10q25-q26). It is inherited in an autosomal recessive manner, which means an affected individual must inherit one copy of the mutation from each parent.
2-Methylbutyryl-CoA dehydrogenase deficiency, also called 2-Methylbutyryl glycinuria or short/branched-chain acyl-CoA dehydrogenase deficiency (SBCADD), is an autosomal recessive metabolic disorder. It causes the body to be unable to process the amino acid isoleucine properly. Initial case reports identified individuals with developmental delay and epilepsy, however most cases identified through newborn screening have been asymptomatic.
In utero exposure to cocaine and other street drugs can lead to septo-optic dysplasia.
DOCK8 deficiency is very rare, estimated to be found in less than one person per million; there have been 32 patients diagnosed as of 2012.
Genetics is found to be the cause of enolase deficiency. The individual in the first known case of this deficiency was heterozygous for the gene for β-enolase, and carried two missense mutations, one inherited from each parent. His muscle cells synthesized two forms of β-enolase, each carrying a different mutation. These mutations changed glycine at position 374 to glutamate (G374E) and glycine at position 156 to aspartate (G156D).
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
Prognosis for recovery following administration of succinylcholine is excellent when medical support includes close monitoring and respiratory support measures.
In nonmedical settings in which subjects with pseudocholinesterase deficiency are exposed to cocaine, sudden cardiac death can occur.
This inherited condition can be diagnosed with a blood test. If the total cholinesterase activity in the patient's blood is low, this may suggest an atypical form of the enzyme is present, putting the patient at risk of sensitivity to suxamethonium and related drugs. Inhibition studies may also be performed to give more information about potential risk. In some cases, genetic studies may be carried out to help identify the form of the enzyme that is present.
Urocanic aciduria is thought to be relatively benign. Although aggressive behavior and mental retardation have been reported with the disorder, no definitive neurometabolic connection has yet been established.
The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. The increased incidence of SPCD in mothers compared to newborns is not completely understood. Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. Worldwide, SPCD has the highest incidence in the relatively genetically isolated Faroe Islands, where an extensive screening program was instituted after the sudden death of two teenagers. The incidence in the Faroe Islands is approximately 1:200.
Rare familial recurrence has been reported, suggesting at least one genetic form (HESX1). In addition to HESX1, mutations in OTX2, SOX2 and PAX6 have been implicated in de Morsier syndrome, but in most cases SOD is a sporadic birth defect of unknown cause and does not recur with subsequent pregnancies.
Lipoprotein lipase deficiency (also known as "familial chylomicronemia syndrome", "chylomicronemia", "chylomicronemia syndrome" and "hyperlipoproteinemia type Ia") is a rare autosomal recessive lipid disorder caused by a mutation in the gene which codes lipoprotein lipase. As a result, afflicted individuals lack the ability to produce lipoprotein lipase enzymes necessary for effective breakdown of triglycerides.