Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Diet and lifestyle are believed to play a large role in whether colorectal polyps form. Studies show there to be a protective link between consumption of cooked green vegetables, brown rice, legumes, and dried fruit and decreased incidence of colorectal polyps.
Screening for colonic polyps as well as preventing them has become an important part of the management of the condition. Medical societies have established guidelines for colorectal screening in order to prevent adenomatous polyps and to minimize the chances of developing colon cancer. It is believed that some changes in the diet might be helpful in preventing polyps from occurring but there is no other way to prevent the polyps from developing into cancerous growths than by detecting and removing them.
According to the guidelines established by the American Cancer Society, individuals who reach the age of 50 should perform an occult blood test yearly. Colon polyps as they grow can sometimes cause bleeding within the intestine, which can be detected with the help of this test. Also, persons in their 50s are recommended to have flexible sigmoidoscopies performed once in 3 to 5 years to detect any abnormal growth which could be an adenomatous polyp. If adenomatous polyps are detected during this procedure, it is most likely that the patient will have to undergo a colonoscopy. Medical societies recommend colonoscopies every ten years starting at age 50 as a necessary screening practice for colon cancer. The screening provides an accurate image of the intestine and also allows the removal of the polyp, if found. Once an adenomatous polyp is identified during colonoscopy, there are several methods of removal including using a snare or a heating device. Colonoscopies are preferred over sigmoidoscopies because they allow the examination of the entire colon; a very important aspect, considering that more than half of the colonic polyps occur in the upper colon, which is not reached during sigmoidoscopies.
It has been statistically demonstrated that screening programs are effective in reducing the number of deaths caused by colon cancer due to adenomatous polyps. While there are risks of complications associated with colonoscopies, those risks are extremely low at approximately 0.35 percent. For comparison, the lifetime risk of developing colon cancer is around 6 percent. As there is a small likelihood of recurrence, surveillance after polyp removal is recommended.
Colorectal polyps can be detected using a faecal occult blood test, flexible sigmoidoscopy, colonoscopy, virtual colonoscopy, digital rectal examination, barium enema or a pill camera.
Malignant potential is associated with
- degree of dysplasia
- Type of polyp (e.g. villous adenoma):
- Tubular Adenoma: 5% risk of cancer
- Tubulovillous adenoma: 20% risk of cancer
- Villous adenoma: 40% risk of cancer
- Size of polyp:
- <1 cm =<1% risk of cancer
- 1 cm=10% risk of cancer
- 2 cm=15% risk of cancer
Normally an adenoma which is greater than 0.5 cm is treated
The risks of progression to colorectal cancer increases if the polyp is larger than 1 cm and contains a higher percentage of villous component. Also, the shape of the polyps is related to the risk of progression into carcinoma. Polyps that are pedunculated (with a stalk) are usually less dangerous than sessile polyps (flat polyps). Sessile polyps have a shorter pathway for migration of invasive cells from the tumor into submucosal and more distant structures, and they are also more difficult to remove and to ascertain. Sessile polyps larger than 2 cm usually contain villous features, have a higher malignant potential, and tend to recur following colonoscopic polypectomy.
Although polyps do not carry significant risk of colon cancer, tubular adenomatous polyps may become cancerous when they grow larger. Larger tubular adenomatous polyps have an increased risk of malignancy when larger because then they develop more villous components and may become sessile.
It is estimated that an individual whose parents have been diagnosed with an adenomatous polyp has a 50% greater chance to develop colon cancer than individuals with no family history of colonic polyps. At this point, there is no method to establish the risks that patients with a family history of colon polyps have to develop these growths. Overall, nearly 6% of the population, regardless of the family history, is at risk of developing colon cancer.
The incidence of the mutation is between 1 in 10,000 and 1 in 15,000 births.
By age 35 years, 95% of individuals with FAP (>100 adenomas) have polyps. Without colectomy, colon cancer is virtually inevitable. The mean age of colon cancer in untreated individuals is 39 years (range 34–43 years).
Attentuated FAP arises when APC is defective but still somewhat functional. As a result, it retains part of its ability to suppress polyps. Therefore, attenuated FAP manifests as colorectal cancer unusually late (age 40–70, average=55), and typically with few, or at least far fewer polyps (typically 30), than the more usual version of FAP, at an age when FAP is no longer considered much of a likelihood or risk according to usual FAP epidemiology.
Most juvenile polyps are benign, however, malignancy can occur. The cumulative lifetime risk of colorectal cancer is 39% in patients with juvenile polyposis syndrome.
Complete removal of a SSA is considered curative.
Several SSAs confer a higher risk of subsequently finding colorectal cancer and warrant more frequent surveillance. The surveillance guidelines are the same as for other colonic adenomas. The surveillance interval is dependent on (1) the number of adenomas, (2) the size of the adenomas, and (3) the presence of high-grade microscopic features.
Fundic gland polyps are found in 0.8 to 1.9% of patients who undergo esophagogastroduodenoscopy, and are more common in middle aged women.
The most important consideration in evaluating patients with FGPs is distinguishing between sporadic form (patients without any other gastrointestinal condition, usually in middle age with female prevalence) and syndromic form. This is to ascertain the risk of development of gastric cancer, and to ascertain the risk of concomitant colon cancer.
FGPs can be found in association with the following genetic conditions:
- familial adenomatous polyposis
- attenuated familial adenomatous polyposis syndromes
- Zollinger-Ellison syndrome
- gastric adenocarcinoma associated with proxymal polyposis of the stomach (GAPPS): this condition, described in three families is characterized by development of antral adenomas and FGPs, with early development of severe dysplasia and gastric cancer, in absence of overt intestinal polyposis. This condition has been recently characterized by a point mutation in exon 1B of APC gene.
Sporadic FGPs have been associated with:
- chronic use of proton pump inhibitors (proposed by some authors, denied by others)
- "Helicobacter pylori" infection: there is a reverse relationship between infection and fundic gland polyps, and infection by "H pylori" causes polyps regression.
In gastroenterology, a sessile serrated adenoma (abbreviated SSA), also known as sessile serrated polyp (abbreviated SSP), is a premalignant flat (or sessile) lesion of the colon, predominantly seen in the cecum and ascending colon.
SSAs are thought to lead to colorectal cancer through the (alternate) "serrated pathway". This differs from most colorectal cancer, which arises from mutations starting with inactivation of the APC gene.
Multiple SSAs may be part of the "serrated polyposis syndrome".
Familial adenomatous polyposis (FAP) is an autosomal dominant inherited condition in which numerous adenomatous polyps form mainly in the epithelium of the large intestine. While these polyps start out benign, malignant transformation into colon cancer occurs when they are left untreated. Three variants are known to exist, FAP and attenuated FAP (originally called hereditary flat adenoma syndrome) are caused by APC gene defects on chromosome 5 while autosomal recessive FAP (or MYH-associated polyposis) is caused by defects in the "MUTYH" gene on chromosome 1. Of the three, FAP itself is the most severe and most common; although for all three, the resulting colonic polyps and cancers are confined to the colon wall and removal can greatly reduce the spread of cancer.
The root cause of FAP is understood to be a genetic mutation—a flaw in the body's tumour suppressor genes that prevent development of tumours. The flaw allows numerous cells of the intestinal wall to develop into potentially cancerous polyps when they would usually reach the end of their life; inevitably one or more will eventually progress and give rise to cancer (7% risk by age 21, rising to 87% by age 45 and 93% by age 50). The flawed genes do not trigger cancer, but rather, they reduce the body's ability to protect against the risk of aged cells becoming cancerous. Even with the flawed gene, it may still take time before a cell actually does develop that is cancerous as a result, and the gene may in some cases still partially operate to control tumours, therefore cancer from FAP takes many years to develop and is almost always an adult-onset disease.
The second form of FAP, known as attenuated familial adenomatous polyposis has the APC gene functional but slightly impaired. It is therefore somewhat able to operate as usual. Attenuated FAP still presents a high 70% lifetime risk of cancer (as estimated), but typically presents with far fewer polyps (typically 30) rather than the hundreds or thousands usually found in FAP, and arises at an age when FAP is usually no longer considered likely—typically between 40 and 70 years old (average 55) rather than the more usual 30's upward. Because it has far fewer polyps, options for management may be different.
The third variant, autosomal recessive familial adenomatous polyposis or MYH-associated polyposis, is also milder and, as its name suggests, requires both parents to be 'carriers' to manifest the condition.
In some cases FAP can manifest higher in the colon than usual (for example, the ascending colon, or proximal to the splenic flexure, or in the gastric or duodenal tracts) where they show no symptoms until cancer is present and greatly advanced. APC mutations have been linked to certain other cancers such as thyroid cancer. As the mutation causing FAP is genetic, it can be inherited hereditarily from either parent, and passed to children. A genetic blood test of the APC gene exists that can determine whether it is deficient, and therefore can predict the possibility of FAP. Individuals at risk (due to family links or genetic testing) are usually offered routine monitoring of the intestinal tract every 1 – 5 years for life, from early adulthood, to detect the slow-forming polyps and act if found, before they can pose a threat. International polyposis registries exists that track known cases of FAP or APC gene defects, for research and clinical purposes. Mutation of APC also occurs commonly in incident cases of colorectal carcinoma, emphasizing its importance in this form of cancer.
Polypoid lesions of the gallbladder affect approximately 5% of the adult population. The causes are uncertain, but there is a definite correlation with increasing age and the presence of gallstones (cholelithiasis). Most affected individuals do not have symptoms. The gallbladder polyps are detected during abdominal ultrasonography performed for other reasons.
The incidence of gallbladder polyps is higher among men than women. The overall prevalence among men of Chinese ancestry is 9.5%, higher than other ethnic types.
Juvenile Polyposis Syndrome can occur sporadically in families or be inherited in an autosomal dominant manner.
Two genes associated with Juvenile Polyposis Syndrome are BMPR1A and SMAD4. Gene testing may be useful when trying to ascertain which non-symptomatic family members may be at risk of developing polyps, however having a known familial mutation would be unlikely to change the course of treatment. A known mutation may also be of use for affected individuals when they decide to start a family as it allows them reproductive choices.
While mutations in the gene PTEN were also thought to have caused Juvenile Polyposis Syndrome, it is now thought that mutations in this gene cause a similar clinical picture to Juvenile Polyposis Syndrome but are actually affected with Cowden syndrome or other phenotypes of the PTEN hamartoma tumor syndrome.
In the United States, about 160,000 new cases of colorectal cancer are diagnosed each year. Hereditary nonpolyposis colorectal cancer is responsible for approximately 2 percent to 7 percent of all diagnosed cases of colorectal cancer. The average age of diagnosis of cancer in patients with this syndrome is 44 years old, as compared to 64 years old in people without the syndrome.
The average age at time of EIN diagnosis is approximately 52 years, compared to approximately 61 years for carcinoma. The timeframe and likelihood of EIN progression to cancer, however, is not constant amongst all women. Some cases of EIN are first detected as residual premalignant disease in women who already have carcinoma, whereas other EIN lesions disappear entirely and never lead to cancer. For this reason, treatment benefits and risks must be individualized for each patient under the guidance of an experienced physician.
Risk factors for development of EIN and the endometrioid type of endometrial carcinoma include exposure to estrogens without opposing progestins, obesity, diabetes, and rare hereditary conditions such as hereditary nonpolyposis colorectal cancer. Protective factors include use of combined oral contraceptive pills (low dose estrogen and progestin), and prior use of a contraceptive intrauterine device.
There is a risk of development of cancer with fundic gland polyposis, but it varies based on the underlying cause of the polyposis. The risk is highest with congenital polyposis syndromes, and is lowest in acquired causes. As a result, it is recommended that patients with multiple fundic polyps have a colonoscopy to evaluate the colon. If there are polyps seen on colonoscopy, genetic testing and testing of family members is recommended.
In the gastric adenocarcinoma associated with proximal polyposis of the stomach (GAPPS), there is a high risk of early development of proximal gastric adenocarcinoma.
It is still unclear which patients would benefit with surveillance gastroscopy, but most physicians recommend endoscopy every one to three years to survey polyps for dysplasia or cancer. In the event of high grade dysplasia, polypectomy, which is done through the endoscopy, or partial gastrectomy may be recommended. One study showed the benefit of NSAID therapy in regression of gastric polyps, but the efficacy of this strategy (given the side effects of NSAIDs) is still dubious.
Hereditary nonpolyposis colorectal cancer (HNPCC) or Lynch syndrome is an autosomal dominant genetic condition that has a high risk of colon cancer as well as other cancers including endometrial cancer (second most common), ovary, stomach, small intestine, hepatobiliary tract, upper urinary tract, brain, and skin. The increased risk for these cancers is due to inherited mutations that impair DNA mismatch repair. It is a type of cancer syndrome.
Attenuated familial adenomatous polyposis is a form of familial adenomatous polyposis, a cancer syndrome. It is a pre-malignant disease that can develop into colorectal cancer. A patient will have fewer than a hundred polyps located typically in right side of the colon. Cancer might develop as early as the age of five, though typically presents later than classical FAP.
Gardner syndrome, also known as Gardner's syndrome or familial colorectal polyposis, is an autosomal dominant form of polyposis characterized by the presence of multiple polyps in the colon together with tumors outside the colon. The extracolonic tumors may include osteomas of the skull, thyroid cancer, epidermoid cysts, fibromas, as well as the occurrence of desmoid tumors in approximately 15% of affected individuals.
Desmoid tumors are fibrous tumors which usually occur in the tissue covering the intestines and may be provoked by surgery to remove the colon. The countless polyps in the colon predispose to the development of colon cancer; if the colon is not removed, the chance of colon cancer is considered to be very significant. Polyps may also grow in the stomach, duodenum, spleen, kidneys, liver, mesentery and small bowel. In a small number of cases, polyps have also appeared in the cerebellum. Cancers related to Gardner syndrome commonly appear in the thyroid, liver and kidneys. The number of polyps increases with age, and hundreds to thousands of polyps can develop in the colon.
The syndrome was first described in 1951. There is no cure at this time, and in its more advanced forms, it is considered a terminal diagnosis with a life expectancy of 35–45 years; treatments are surgery and palliative care, although some chemotherapy has been tried with limited success.
This is a very rare neoplasm accounting for approximately 0.0003% of all tumors and about 2.5% of all external ear neoplasms. There is a wide age range at initial presentation, although the mean age is about 50 years of age. Females are affected slightly more often (1.5:1).
Villous adenoma is a type of polyp that grows in the colon and other places in the gastrointestinal tract and sometimes in other parts of the body. These adenomas may become malignant (cancerous). Villous adenomas have been demonstrated to contain malignant portions in about one third of affected persons, and invasive malignancy in another one third of removed specimens. Colonic resection may be required for large lesions. These can also lead to secretory diarrhea with large volume liquid stools with few formed elements. They are commonly described as secreting large amounts of mucus, resulting in hypokalaemia in patients. On endoscopy a "cauliflower' like mass is described due to villi stretching. Being an adenoma, the mass is covered in columnar epithelial cells.
Most polyps are benign and do not need to be removed. Polyps larger than 1 cm with co-occurring gallstones occurring in people over the age of 50 may have the gallbladder removed (cholecystectomy), especially if the polyps are several or appear malignant. Laparoscopic surgery is an option for small or solitary polyps.
Gardner syndrome is inherited in an autosomal dominant manner. Typically, one parent has Gardner syndrome. Each of their children, male and female alike, are at 50% risk of inheriting the gene for Gardner syndrome.
Tubulovillous adenoma, TVA, is a type of polyp that grows in the colon and other places in the gastrointestinal tract and sometimes in other parts of the body. These adenomas may become malignant (cancerous).
TVAs are considered to have a higher risk of malignant transformation than tubular adenomas.
Current dietary recommendations to prevent colorectal cancer include increasing the consumption of whole grains, fruits and vegetables, and reducing the intake of red meat and processed meats. Higher physical activity is also recommended. Physical exercise is associated with a modest reduction in colon but not rectal cancer risk. High levels of physical activity reduce the risk of colon cancer by about 21%. Sitting regularly for prolonged periods is associated with higher mortality from colon cancer. The risk is not negated by regular exercise, though it is lowered. The evidence for any protective effect conferred by fiber and fruits and vegetables is, however, poor. The risk of colon cancer can be reduced by maintaining a normal body weight.
99% of cervical polyps will remain benign and 1% will at some point show neoplastic change. Cervical polyps are unlikely to regrow.