Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Drug induced (iatrogenic) hypoadrenocorticism is caused during abrupt cessation of a steroid medication. During steroid treatment, the adrenal glands do not function fully. The body senses the levels of the exogenous steroids in the system and therefore does not signal for additional production. The usual protocol for stopping steroid medications is not to eliminate them suddenly, but to withdraw from them gradually in a "tapering off" process, which allows the production to adjust to normal. If steroids are abruptly withdrawn, the dormant adrenal glands may not able to reactivate, and the body will need to have its adrenal glucocorticoid hormones replaced by medication.
In secondary hypoadrenocorticism (also known as atypical hypoadrenocorticism) the problem is not in the adrenal gland but in the pituitary gland. Usually, the anterior portion of the pituitary gland produces a hormone, adrenocorticotropic hormone (ACTH), that signals the zona fasciculata and zona reticularis to produce their steroids. When the pituitary is unable to produce ACTH, these zones stop production of their hormones. The zona glomerulosa is not controlled by ACTH, and remains able to produce a normal amount of mineralocorticoids. A dog with secondary hypoadrenocorticism is not at risk of an Addisonian crisis, and only needs to have medication to replace the glucocorticoid steroid cortisol. One dog in every 42 diagnosed with hypoadrenocorticism has the secondary form of the disease where mineralocorticoid production remains intact.
Secondary adrenocortical insufficiency involves only a deficiency of glucocorticoid secretion. Destructive lesions (e.g. neoplasia, inflammation) in the pituitary gland or hypothalamus and chronic administration of exogenous glucocorticoids or megestrol acetate (cats) are the most common causes.
In some dogs with secondary hypoadrenocorticism, the disease progresses to primary hypoadrenocorticism, and mineralocorticoid replacement becomes necessary, while others retain their ability to continue production of mineralocorticoids for years, requiring glucocorticoid replacement only.
All causes in this category are genetic, and generally very rare. These include mutations to the "SF1" transcription factor, congenital adrenal hypoplasia due to "DAX-1" gene mutations and mutations to the ACTH receptor gene (or related genes, such as in the Triple A or Allgrove syndrome). "DAX-1" mutations may cluster in a syndrome with glycerol kinase deficiency with a number of other symptoms when "DAX-1" is deleted together with a number of other genes.
Outcomes are typically good when treated. Most can expect to live relatively normal lives. Someone with the disease should be observant of symptoms of an "Addison's crisis" while the body is strained, as in rigorous exercise or being sick, the latter often needing emergency treatment with intravenous injections to treat the crisis.
Individuals with Addison's disease have more than a doubled mortality rate. Furthermore, individuals with Addison's disease and diabetes mellitus have an almost 4 time increase in mortality compared to individuals with only diabetes.
Causes of acute adrenal insufficiency are mainly sudden withdrawal of long-term corticosteroid therapy, Waterhouse-Friderichsen syndrome, and stress in people with underlying chronic adrenal insufficiency. The latter is termed critical illness–related corticosteroid insufficiency.
For chronic adrenal insufficiency, the major contributors are autoimmune adrenalitis (Addison's Disease), tuberculosis, AIDS, and metastatic disease. Minor causes of chronic adrenal insufficiency are systemic amyloidosis, fungal infections, hemochromatosis, and sarcoidosis.
Autoimmune adrenalitis may be part of Type 2 autoimmune polyglandular syndrome, which can include type 1 diabetes, hyperthyroidism, and autoimmune thyroid disease (also known as autoimmune thyroiditis, Hashimoto's thyroiditis, and Hashimoto's disease). Hypogonadism may also present with this syndrome. Other diseases that are more common in people with autoimmune adrenalitis include premature ovarian failure, celiac disease, and autoimmune gastritis with pernicious anemia.
Adrenoleukodystrophy can also cause adrenal insufficiency.
Adrenal insufficiency can also result when a patient has a craniopharyngioma, which is a histologically benign tumor that can damage the pituitary gland and so cause the adrenal glands not to function. This would be an example of secondary adrenal insufficiency syndrome.
Causes of adrenal insufficiency can be categorized by the mechanism through which they cause the adrenal glands to produce insufficient cortisol. These are adrenal dysgenesis (the gland has not formed adequately during development), impaired steroidogenesis (the gland is present but is biochemically unable to produce cortisol) or adrenal destruction (disease processes leading to glandular damage).
The frequency rate of Addison's disease in the human population is sometimes estimated at roughly one in 100,000. Some put the number closer to 40–144 cases per million population (1/25,000–1/7,000). Addison's can affect persons of any age, sex, or ethnicity, but it typically presents in adults between 30 and 50 years of age. Research has shown no significant predispositions based on ethnicity.
Hahner et al. investigated the frequency, causes and risk factors for adrenal crisis in patients with chronic adrenal insufficiency. Annane et al.'s landmark 2002 study found a very high rate of relative adrenal insufficiency among the enrolled patients with septic shock.
Several studies have shown that hypopituitarism is associated with an increased risk of cardiovascular disease and some also an increased risk of death of about 50% to 150% the normal population. It has been difficult to establish which hormone deficiency is responsible for this risk, as almost all patients studied had growth hormone deficiency. The studies also do not answer the question as to whether the hypopituitarism itself causes the increased mortality, or whether some of the risk is to be attributed to the treatments, some of which (such as sex hormone supplementation) have a recognized adverse effect on cardiovascular risk.
The largest study to date followed over a thousand people for eight years; it showed an 87% increased risk of death compared to the normal population. Predictors of higher risk were: female sex, absence of treatment for sex hormone deficiency, younger age at the time of diagnosis, and a diagnosis of craniopharyngioma. Apart from cardiovascular disease, this study also showed an increased risk of death from lung disease.
Quality of life may be significantly reduced, even in those people on optimum medical therapy. Many report both physical and psychological problems. It is likely that the commonly used replacement therapies do not completely mimic the natural hormone levels in the body. Health costs remain about double those of the normal population.
Hypopituitarism is usually permanent. It requires lifelong treatment with one or more medicines.
In a study of 1,034 symptomatic adults, Sheehan syndrome was found to be the sixth most frequent etiology of growth hormone deficiency, being responsible for 3.1% of cases (versus 53.9% due to a pituitary tumor).
There is only one study that has measured the prevalence (total number of cases in a population) and incidence (annual number of new cases) of hypopituitarism. This study was conducted in Northern Spain and used hospital records in a well-defined population. The study showed that 45.5 people out of 100,000 had been diagnosed with hypopituitarism, with 4.2 new cases per year. 61% were due to tumors of the pituitary gland, 9% due to other types of lesions, and 19% due to other causes; in 11% no cause could be identified.
Recent studies have shown that people with a previous traumatic brain injury, spontaneous subarachnoid hemorrhage (a type of stroke) or radiation therapy involving the head have a higher risk of hypopituitarism. After traumatic brain injury, as much as a quarter have persistent pituitary hormone deficiencies. Many of these people may have subtle or non-specific symptoms that are not linked to pituitary problems but attributed to their previous condition. It is therefore possible that many cases of hypopituitarism remain undiagnosed, and that the annual incidence would rise to 31 per 100,000 annually if people from these risk groups were to be tested.
Adrenal crisis is triggered by physiological stress (such as trauma). Activities that have an elevated risk of trauma are best avoided. Treatment must be given within two hours of trauma and consequently it is advisable to carry injectable hydrocortisone in remote areas.
Almost all cases of pituitary apoplexy arise from a pituitary adenoma, a benign tumor of the pituitary gland. In 80%, the patient has been previously unaware of this (although some will retrospectively report associated symptoms). It was previously thought that particular types of pituitary tumors were more prone to apoplexy than others, but this has not been confirmed. In absolute terms, only a very small proportion of pituitary tumors eventually undergoes apoplexy. In an analysis of incidentally found pituitary tumors, apoplexy occurred in 0.2% annually, but the risk was higher in tumors larger than 10 mm ("macroadenomas") and tumors that were growing more rapidly; in a meta-analysis, not all these associations achieved statistical significance.
The majority of cases (60–80%) are not precipitated by a particular cause. A quarter has a history of high blood pressure, but this is a common problem in the general population, and it is not clear whether it significantly increase the risk of apoplexy. A number of cases has been reported in association with particular conditions and situations; it is uncertain whether these were in fact causative. Amongst reported associations are surgery (especially coronary artery bypass graft, where there are significant fluctuations in the blood pressure), disturbances in blood coagulation or medication that inhibits coagulation, radiation therapy to the pituitary, traumatic brain injury, pregnancy (during which the pituitary enlarges) and treatment with estrogens. Hormonal stimulation tests of the pituitary have been reported to provoke episodes. Treatment of prolactinomas (pituitary adenomas that secrete prolactin) with dopamine agonist drugs, as well as withdrawal of such treatment, has been reported to precipitate apoplexy.
Hemorrhage from a Rathke's cleft cyst, a remnant of Rathke's pouch that normally regresses after embryological development, may cause symptoms that are indistinguishable from pituitary apoplexy. Pituitary apoplexy is regarded by some as distinct from Sheehan's syndrome, where the pituitary undergoes infarction as a result of prolonged very low blood pressure, particularly when caused by bleeding after childbirth. This condition usually occurs in the absence of a tumor. Others regard Sheehan's syndrome as a form of pituitary apoplexy.
Pituitary apoplexy is rare. Even in people with a known pituitary tumor, only 0.6–10% experience apoplexy; the risk is higher in larger tumors. Based on extrapolations from existing data, one would expect 18 cases of pituitary apoplexy per one million people every year; the actual figure is probably lower.
The average age at onset is 50; cases have reported in people between 15 and 90 years old. Men are affected more commonly than women, with a male-to-female ratio of 1.6. The majority of the underlying tumors are "null cell" or nonsecretory tumors, which do not produce excessive amounts of hormones; this might explain why the tumor has often gone undetected prior to an episode of apoplexy.
In the developed world it is a rare complication of pregnancy, usually occurring after excessive blood loss. The presence of disseminated intravascular coagulation (i.e., in amniotic fluid embolism or HELLP syndrome) also appears to be a factor in its development.
Adrenalitis, also called adrenitis, is the inflammation of one or both adrenal glands, which can lead to an insufficiency of epinephrine or norepinephrine.
Types can include, but are not limited to:
- Xanthogranulomatous adrenalitis
- Autoimmune adrenalitis (a major cause of Addison's disease)
- Hemorrhagic adrenalitis
Adrenal fatigue or hypoadrenia are terms used in alternative medicine to describe the unscientific belief that the adrenal glands are exhausted and unable to produce adequate quantities of hormones, primarily the glucocorticoid cortisol, due to chronic stress or infections. Adrenal fatigue should not be confused with actual forms of adrenal dysfunction such as adrenal insufficiency or Addison's disease.
The term "adrenal fatigue", which was invented in 1998 by James Wilson, a chiropractor, may be applied to a collection of mostly nonspecific symptoms. There is no scientific evidence supporting the concept of adrenal fatigue and it is not recognized as a diagnosis by the medical community. A systematic review found no evidence for the term adrenal fatigue, confirming the consensus among endocrinological societies that it is a myth.
Blood or salivary testing is sometimes offered but there is no evidence that adrenal fatigue exists or can be tested. The concept of adrenal fatigue has given rise to an industry of dietary supplements marketed to treat this condition. These supplements are largely unregulated in the U.S., are ineffective, and in some cases may be dangerous.
Endocrine syndromes associated with acanthosis nigricans can develop in many conditions, particularly:
- starts with insulin resistance, such as diabetes mellitus and metabolic syndrome
- excess circulating androgens, particularly Cushing's disease, acromegaly, polycystic ovarian disease
- Addison's disease and hypothyroidism
- Rare diseases, including pinealoma, leprechaunism, lipoatrophic diabetes, pineal hyperplasia syndrome, pituitary basophilism, ovarian hyperthecosis, stromal luteoma, ovarian dermoid cysts, Prader-Willi syndrome, and Alstrom syndrome.
Acanthosis nigricans associated with endocrine dysfunction is more insidious in its onset, is less widespread, and the patients are often concurrently obese.
Acanthosis nigricans is likely to improve in circumstances where a known cause is removed. For example, obesity-related acanthosis nigricans will improve with weight loss, and drug-induced acanthosis nigricans is likely to resolve when the drug is ceased. Hereditary variants may or may not fade with age, and malignancy-associated variants may, after a malignancy is removed, fade.
A hypercalcaemic crisis is an emergency situation with a severe hypercalcaemia, generally above approximately 14 mg/dL (or 3.5 mmol/l).
The main symptoms of a hypercalcaemic crisis are oliguria or anuria, as well as somnolence or coma. After recognition, primary hyperparathyroidism should be proved or excluded.
In extreme cases of primary hyperparathyroidism, removal of the parathyroid gland after surgical neck exploration is the only way to avoid death. The diagnostic program should be performed within hours, in parallel with measures to lower serum calcium. Treatment of choice for acutely lowering calcium is extensive hydration and calcitonin, as well as bisphosphonates (which have effect on calcium levels after one or two days).
Primary hyperparathyroidism and malignancy account for about 90% of cases of hypercalcaemia.
There is volume expansion in the body, no edema, but hyponatremia occurs
- SIADH (and its many causes)
- Hypothyroidism
- Not enough ACTH
The hypovolemia (extracellular volume loss) is due to total body sodium loss. The hyponatremia is caused by a relatively smaller loss in total body water.
- any cause of hypovolemia such as prolonged vomiting, decreased oral intake, severe diarrhea
- diuretic use (due to the diuretic causing a volume depleted state and thence ADH release, and not a direct result of diuretic-induced urine sodium loss)
- Addison's disease and congenital adrenal hyperplasia in which the adrenal glands do not produce enough steroid hormones (combined glucocorticoid and mineralocorticoid deficiency)
- pancreatitis
Prolonged periods of exercise may be a cause, known as exercise-associated hyponatremia (EAH). It is common in marathon runners and participants of other endurance events. The use of MDMA can result in hyponatremia. This likely occurs as a result of fluid loss via sweating and replacement with water without electrolytes.
Autoimmune polyendocrine syndrome type 1 is a condition caused in an autosomal recessive manner. Furthermore, it is due to a defect in AIRE gene (which helps to make a protein that is called the autoimmune regulator) mapped to 21q22.3 chromosome location, hence chromosome 21.
Autoimmune polyendocrine syndrome type 1 treatment is based on the symptoms that are presented by the affected individual, additionally there is:
- Hormone replacement
- Systemic antifungal treatment
- Immunosuppressive treatment
Preventing recurrence of hyperkalemia typically involves reduction of dietary potassium, removal of an offending medication, and/or the addition of a diuretic (such as furosemide or hydrochlorothiazide). Sodium polystyrene sulfonate and sorbitol (combined as Kayexalate) are occasionally used on an ongoing basis to maintain lower serum levels of potassium though the safety of long-term use of sodium polystyrene sulfonate for this purpose is not well understood.
High dietary sources include vegetables such as avocados, tomatoes and potatoes, fruits such as bananas, oranges and nuts.