Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
This disorder, epidemiologically speaking, is thought to affect approximately 1 in 50,000 newborns according to Jethva, et al. While in the U.S. state of California there seems to be a ratio of 1 in 35,000.
A 2001 study followed up on 50 patients. Of these 38% died in childhood while the rest suffered from problems with morbidity.
Current research suggests that nearly 8% of the population has at least partial DPD deficiency. A diagnostics determination test for DPD deficiency is available and it is expected that with a potential 500,000 people in North America using 5-FU this form of testing will increase. The whole genetic events affecting the DPYD gene and possibly impacting on its function are far from being elucidated, and epigenetic regulations could probably play a major role in DPD deficiency. It seems that the actual incidence of DPD deficiency remains to be understood because it could depend on the very technique used to detect it. Screening for genetic polymorphisms affecting the "DPYD" gene usually identify less than 5% of patients bearing critical mutations, whereas functional studies suggest that up to 20% of patients could actually show various levels of DPD deficiency.
Women could be more at risk than men. It is more common among African-Americans than it is among Caucasians.
A 2011 review of 176 cases found that diagnoses made early in life (within a few days of birth) were associated with more severe disease and a mortality of 33%. Children diagnosed later, and who had milder symptoms, showed a lower mortality rate of ~3%.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
Incomplete list of various fatty-acid metabolism disorders.
- Carnitine Transport Defect
- Carnitine-Acylcarnitine Translocase (CACT) Deficiency
- Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
- 2,4 Dienoyl-CoA Reductase Deficiency
- Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
- 3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
- Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
- Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
- Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
- Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
- 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)
Mutations in the "HADH" gene lead to inadequate levels of an enzyme called 3-hydroxyacyl-coenzyme A dehydrogenase. Medium-chain and short-chain fatty acids cannot be metabolized and processed properly without sufficient levels of this enzyme. As a result, these fatty acids are not converted to energy, which can lead to characteristic features of this disorder, such as lethargy and hypoglycemia. Medium-chain and short-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the liver, heart, and muscles, causing more serious complications.
This condition is inherited in an autosomal recessive pattern, which means two copies of the gene in each cell are altered. Most often, the parents of an individual with an autosomal recessive disorder each carry one copy of the altered gene but do not show signs and symptoms of the disorder.
Mutations in the "HADHA" gene lead to inadequate levels of an enzyme called long-chain 3-hydroxyacyl-coenzyme A (CoA) dehydrogenase, which is part of a protein complex known as mitochondrial trifunctional protein. Long-chain fatty acids from food and body fat cannot be metabolized and processed without sufficient levels of this enzyme. As a result, these fatty acids are not converted to energy, which can lead to characteristic features of this disorder, such as lethargy and hypoglycemia. Long-chain fatty acids or partially metabolized fatty acids may build up in tissues and damage the liver, heart, retina, and muscles, causing more serious complications.
This condition is sometimes mistaken for fatty acid and ketogenesis disorders such as Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD), other long-chain fatty acid oxidation disorders such as Carnitine palmitoyltransferase II deficiency (CPT-II) and Reye syndrome.
Succinyl-CoA:3-oxoacid CoA transferase deficiency (SCOT deficiency) is an inborn error of ketone body utilization. Succinyl-CoA:3-oxoacid CoA transferase catalyzes the transfer of coenzyme A from succinyl-coenzyme A to acetoacetate. It can be caused by mutation in the "OXCT1" gene.
First described in 1972, more than 30 people have been reported in the medical literature with this inborn error of metabolism. They experience attacks of ketoacidosis during illness, and even when unwell may have elevated levels of ketone bodies in blood and urine (ketonemia and ketonuria, respectively). Not all people with SCOT deficiency have persistent ketonemia and ketonuria, particularly those with milder defects of enzyme activity.
MCADD presents in early childhood with hypoketotic hypoglycemia and liver dysfunction, often preceded by extended periods of fasting or an infection with vomiting. Infants who are exclusively breast-fed may present in this manner shortly after birth, due to poor feeding. In some individuals the first manifestation of MCADD may be sudden death following a minor illness. A number of individuals with MCADD may remain completely asymptomatic, provided they never encounter a situation that sufficiently stresses their metabolism. With the advent of expanded newborn screening, some mothers have been identified with MCADD after their infants had positive newborn screens for low carnitine levels.
The enzyme "MCAD" is responsible for the dehydrogenation step of fatty acids with chain lengths between 6 and 12 carbons as they undergo beta-oxidation in the mitochondria. Fatty acid beta-oxidation provides energy after the body has used up its stores of glucose and glycogen. This oxidation typically occurs during periods of extended fasting or illness when caloric intake is reduced, and energy needs are increased.
Short-chain acyl-coenzyme A dehydrogenase deficiency (SCADD), also called ACADS deficiency and SCAD deficiency, is an autosomal recessive fatty acid oxidation disorder which affects enzymes required to break down a certain group of fats called short chain fatty acids.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
Since biotin is in many foods at low concentrations, deficiency is rare except in locations where malnourishment is very common. Pregnancy, however, alters biotin catabolism and despite a regular biotin intake, half of the pregnant women in the U.S. are marginally biotin deficient.
Babies with this disorder are usually healthy at birth. The signs and symptoms may not appear until later in infancy or childhood and can include poor feeding and growth (failure to thrive), a weakened and enlarged heart (dilated cardiomyopathy), seizures, and low numbers of red blood cells (anemia). Another feature of this disorder may be very low blood levels of carnitine (a natural substance that helps convert certain foods into energy).
Isobutyryl-CoA dehydrogenase deficiency may be worsened by long periods without food (fasting) or infections that increase the body's demand for energy. Some individuals with gene mutations that can cause isobutyryl-CoA dehydrogenase deficiency may never experience any signs and symptoms of the disorder.
Typically, initial signs and symptoms of this disorder occur during infancy or early childhood and can include poor appetite, vomiting, diarrhea, lethargy, hypoglycemia, hypotonia, liver problems, and abnormally high levels of hyperinsulinism. Insulin controls the amount of sugar that moves from the blood into cells for conversion to energy. Individuals with 3-hydroxyacyl-coenzyme A dehydrogenase deficiency are also at risk for complications such as seizures, life-threatening heart and breathing problems, coma, and sudden unexpected death.
Problems related to 3-hydroxyacyl-coenzyme A dehydrogenase deficiency can be triggered by periods of fasting or by illnesses such as viral infections. This disorder is sometimes mistaken for Reye syndrome, a severe disorder that may develop in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections.
If a metabolic crisis is not treated, a child with VLCADD can develop: breathing problems, seizures, coma, sometimes leading to death.
Carnitine palmitoyltransferase I deficiency is a rare metabolic disorder that prevents the body from converting certain fats called long-chain fatty acids into energy, particularly during periods without food.
Carnitine, a natural substance acquired mostly through the diet, is used by cells to process fats and produce energy. People with this disorder have a faulty enzyme, carnitine palmitoyltransferase I, that prevents these long-chain fatty acids from being transported into the mitochondria to be broken down.
Mutations in the "SLC25A20" gene lead to the production of a defective version of an enzyme called carnitine-acylcarnitine translocase.
Without this enzyme, long-chain fatty acids from food and fats stored in the body cannot be broken down and processed. As a result, these fatty acids are not converted into energy, which can lead to characteristic signs and symptoms of this disorder, such as weakness, hypoglycemia, and an irregular heartbeat. Free long-chain fatty acids or those that are joined with carnitine can affect the electrical properties of cardiac cells causing an irregular heart beat (arrhythmia, which can lead to cardiac arrest). Fatty acids may also build up in tissues and can damage the heart, liver, and muscles, and cause more serious complications.
This condition has an autosomal recessive inheritance pattern, which means the defective gene is located on an autosome, and two copies of the gene - one from each parent - must be inherited to be affected by the disorder. The parents of a child with an autosomal recessive disorder are carriers of one copy of the defective gene, but are usually not affected by the disorder.
Isobutyryl-coenzyme A dehydrogenase deficiency, commonly known as IBD deficiency, is a rare metabolic disorder in which the body is unable to process certain amino acids properly.
People with this disorder have inadequate levels of an enzyme that helps break down the amino acid valine, resulting in a buildup of valine in the urine, a symptom called valinuria.
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. The increased incidence of SPCD in mothers compared to newborns is not completely understood. Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. Worldwide, SPCD has the highest incidence in the relatively genetically isolated Faroe Islands, where an extensive screening program was instituted after the sudden death of two teenagers. The incidence in the Faroe Islands is approximately 1:200.