Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Two thirds of people with Guillain–Barré syndrome have experienced an infection before the onset of the condition. Most commonly these are episodes of gastroenteritis or a respiratory tract infection. In many cases, the exact nature of the infection can be confirmed. Approximately 30% of cases are provoked by "Campylobacter jejuni" bacteria, which cause diarrhea. A further 10% are attributable to cytomegalovirus (CMV, HHV-5). Despite this, only very few people with "Campylobacter" or CMV infections develop Guillain–Barré syndrome (0.25–0.65 per 1000 and 0.6–2.2 per 1000 episodes, respectively). The strain of "Campylobacter" involved may determine the risk of GBS; different forms of the bacteria have different lipopolysaccharides on their surface, and some may induce illness (see below) while others will not.
Links between other infections and GBS are less certain. Two other herpesviruses (Epstein–Barr virus/HHV-4 and varicella zoster virus/HHV-3) and the bacterium "Mycoplasma pneumoniae" have been associated with GBS. The tropical viral infection dengue fever and Zika virus have also been associated with episodes of GBS. Previous hepatitis E virus infection has been found to be more common in people with Guillain–Barré syndrome.
Some cases may be triggered by the influenza virus and potentially influenza vaccine. An increased incidence of Guillain–Barré syndrome followed influenza immunization that followed the 1976 swine flu outbreak (H1N1 A/NJ/76); 8.8 cases per million recipients developed the complication. Since then, close monitoring of cases attributable to vaccination has demonstrated that influenza itself can induce GBS. Small increases in incidence have been observed in subsequent vaccination campaigns, but not to the same extent. The 2009 flu pandemic vaccine (against pandemic swine flu virus H1N1/PDM09) did not cause a significant increase in cases. It is considered that the benefits of vaccination in preventing influenza outweigh the small risks of GBS after vaccination. Even those who have previously experienced Guillain–Barré syndrome are considered safe to receive the vaccine in the future. Other vaccines, such as those against poliomyelitis, tetanus or measles, have not been associated with a risk of GBS.
Guillain–Barré syndrome can lead to death as a result of a number of complications: severe infections, blood clots, and cardiac arrest likely due to autonomic neuropathy. Despite optimum care this occurs in about 5% of cases.
There is a variation in the rate and extent of recovery. The prognosis of Guillain–Barré syndrome is determined mainly by age (those over 40 may have a poorer outcome), and by the severity of symptoms after two weeks. Furthermore, those who experienced diarrhea before the onset of disease have a worse prognosis. On the nerve conduction study, the presence of conduction block predicts poorer outcome at 6 months. In those who have received intravenous immunoglobulins, a smaller increase in IgG in the blood two weeks after administration is associated with poorer mobility outcomes at six months than those whose IgG level increased substantially. If the disease continues to progress beyond four weeks, or there are multiple fluctuations in the severity (more than two in eight weeks), the diagnosis may be chronic inflammatory demyelinating polyneuropathy, which is treated differently.
In research studies, the outcome from an episode of Guillain–Barré syndrome is recorded on a scale from 0 to 6, where 0 denotes completely healthy, 1 very minor symptoms but able to run, 2 able to walk but not to run, 3 requiring a stick or other support, 4 confined to bed or chair, 5 requiring long-term respiratory support, 6 death.
The health-related quality of life (HRQL) after an attack of Guillain–Barré syndrome can be significantly impaired. About a fifth are unable to walk unaided after six months, and many experience chronic pain, fatigue and difficulty with work, education, hobbies and social activities. HRQL improves significantly in the first year.
Acute motor axonal neuropathy (AMAN) is a variant of Guillain–Barré syndrome. It is characterized by acute paralysis and loss of reflexes without sensory loss. Pathologically, there is motor axonal degeneration with antibody-mediated attacks of motor nerves and nodes of Ranvier.
A link to "Campylobacter jejuni" was suspected when a young girl was admitted to Second Teaching Hospital. She had become ill after feeding the family chickens. She developed acute paralysis and respiratory failure. Investigators discovered that several of the chickens in the home displayed similar symptoms and "C. jejuni" was found in their droppings. Several of the paralysis patients were found to have antibodies to "C. jejuni" and anti-GD1a antibodies, suggesting a link between the pathogen and the disease. In 2015, Zika virus was linked to AMAN.
The clinical features and course of the condition, the associated auto-antibodies against relevant antigens, and the response to treatment, all suggest that Bickerstaff brainstem encephalitis is an autoimmune disease. However, each of these criteria fails to fit a substantial proportion of patients, and there is no single test or feature which is diagnostic of Bickerstaff brainstem encephalitis. It is therefore possible that a proportion of cases are due to other causes, such as infection or lymphoma, but remain undiagnosed. It is also possible that there is more than one autoimmune disease that can cause an illness which would currently be diagnosed as Bickerstaff's. There is certainly overlap between Guillain–Barré syndrome, Miller Fisher syndrome and Bickerstaff brainstem encephalitis, as well as other conditions associated with anti-ganglioside antibodies such as chronic ophthalmoplegia with anti-GQ1b antibody.
and the pharyngo-cervico-brachial variant of GBS.
Most patients reported in the literature have been given treatments suitable for autoimmune neurological diseases, such as corticosteroids, plasmapheresis and/or intravenous immunoglobulin, and most have made a good recovery. The condition is too rare for controlled trials to have been undertaken.
In 1982 Lewis et al reported a group of patients with a chronic asymmetrical sensorimotor neuropathy mostly affecting the arms with multifocal involvement of peripheral nerves. Also in 1982 Dyck "et al" reported a response to prednisolone to a condition they referred to as chronic inflammatory demyelinating polyradiculoneuropathy. Parry and Clarke in 1988 described a neuropathy which was later found to be associated with IgM autoantibodies directed against GM1 gangliosides. This latter condition was later termed multifocal motor neuropathy This distinction is important because multifocal motor neuropathy responds to intravenous globulin alone while chronic inflammatory demyelinating polyneuropathy responds to intravenous globulin, steroids and plasma exchanges. It has been suggested that multifocal motor neuropathy is distinct from chronic inflammatory demyelinating polyneuropathy and that Lewis-Summer syndrome is a distinct variant type of chronic inflammatory demyelinating polyneuropathy.
The Lewis-Summer form of this condition is considered a rare disease with only 50 cases reported up to 2004. A total of 90 cases had been reported by 2009
Brown-Séquard syndrome is rare as the trauma would have to be something that damaged the nerve fibres on just one half of the spinal cord.
As in multiple sclerosis, another demyelinating condition, it is not possible to predict with certainty how CIDP will affect patients over time. The pattern of relapses and remissions varies greatly with each patient. A period of relapse can be very disturbing, but many patients make significant recoveries.
If diagnosed early, initiation of early treatment to prevent loss of nerve axons is recommended. However, many individuals are left with residual numbness, weakness, tremors, fatigue and other symptoms which can lead to long-term morbidity and diminished quality of life.
It is important to build a good relationship with doctors, both primary care and specialist. Because of the rarity of the illness, many doctors will not have encountered it before. Each case of CIDP is different, and relapses, if they occur, may bring new symptoms and problems. Because of the variability in severity and progression of the disease, doctors will not be able to give a definite prognosis. A period of experimentation with different treatment regimens is likely to be necessary in order to discover the most appropriate treatment regimen for a given patient.
The causes of polyneuropathy can be divided into hereditary and acquired and are therefore as follows:
- "Inherited" -are hereditary motor neuropathies, Charcot–Marie–Tooth disease, and hereditary neuropathy with liability to pressure palsy
- "Acquired" -are diabetes mellitus, vascular neuropathy, alcohol abuse, and Vitamin B12 deficiency
Among the signs/symptoms of polyneuropathy, which can be divided (into sensory and hereditary) and are consistent with the following:
- "Sensory polyneuropathy" - ataxia, numbness, muscle wasting and paraesthesiae.
- "Hereditary polyneuropathy" - scoliosis and hammer toes
Mononeuropathy is a type of neuropathy that only affects a single nerve. Diagnostically, it is important to distinguish it from polyneuropathy because when a single nerve is affected, it is more likely to be due to localized trauma or infection.
The most common cause of mononeuropathy is physical compression of the nerve, known as compression neuropathy. Carpal tunnel syndrome and axillary nerve palsy are examples. Direct injury to a nerve, interruption of its blood supply resulting in (ischemia), or inflammation also may cause mononeuropathy.
Brown-Séquard syndrome may be caused by a spinal cord tumour, trauma [such as a gunshot wound or puncture wound to the cervical (neck) or thoracic spine (back)], ischemia (obstruction of a blood vessel), or infectious or inflammatory diseases such as tuberculosis, or multiple sclerosis. In its pure form, it is rarely seen. The most common cause is penetrating trauma such as a gunshot wound or stab wound to the spinal cord. Decompression sickness may also be a cause of Brown-Séquard syndrome.
The presentation can be progressive and incomplete. It can advance from a typical Brown-Séquard syndrome to complete paralysis. It is not always permanent and progression or resolution depends on the severity of the original spinal cord injury and the underlying pathology that caused it in the first place.
Hemiplegia is not a progressive disorder, except in progressive conditions like a growing brain tumour. Once the injury has occurred, the symptoms should not worsen. However, because of lack of mobility, other complications can occur. Complications may include muscle and joint stiffness, loss of aerobic fitness, muscle spasms, bed sores, pressure ulcers and blood clots.
Sudden recovery from hemiplegia is very rare. Many of the individuals will have limited recovery, but the majority will improve from intensive, specialised rehabilitation. Potential to progress may differ in cerebral palsy, compared to adult acquired brain injury. It is vital to integrate the hemiplegic child into society and encourage them in their daily living activities. With time, some individuals may make remarkable progress.
Transcutaneous electrical nerve stimulation therapy may be effective and safe in the treatment of diabetic peripheral neuropathy. A recent review of three trials involving 78 patients found some improvement in pain scores after 4 and 6, but not 12 weeks of treatment and an overall improvement in neuropathic symptoms at 12 weeks. Another review of four trials found significant improvement in pain and overall symptoms, with 38% of patients in one trial becoming asymptomatic. The treatment remains effective even after prolonged use, but symptoms return to baseline within a month of cessation of treatment.
Toxic optic neuropathy refers to the ingestion of a toxin or an adverse drug reaction that results in vision loss from optic nerve damage. Patients may report either a sudden loss of vision in both eyes, in the setting of an acute intoxication, or an insidious asymmetric loss of vision from an adverse drug reaction. The most important aspect of treatment is recognition and drug withdrawal.
Among the many causes of TON, the top 10 toxins include:
- Medications
- Ethambutol, rifampin, isoniazid, streptomycin (tuberculosis treatment)
- Linezolid (taken for bacterial infections, including pneumonia)
- Chloramphenicol (taken for serious infections not helped by other antibiotics)
- Isoretinoin (taken for severe acne that fails to respond to other treatments)
- Ciclosporin (widely used immunosuppressant)
- Acute Toxins
- Methanol (component of some moonshine, and some cleaning products)
- Ethylene glycol (present in anti-freeze and hydraulic brake fluid)
Metabolic disorders may also cause this version of disease. Systemic problems such as diabetes mellitus, kidney failure, and thyroid disease can cause optic neuropathy, which is likely through buildup of toxic substances within the body. In most cases, the cause of the toxic neuropathy impairs the tissue’s vascular supply or metabolism. It remains unknown as to why certain agents are toxic to the optic nerve while others are not and why particularly the papillomacular bundle gets affected.
Over 40 laboratory tests were initially conducted to rule out various pathogens and environmental toxins. These tests were used to try to identify potential viruses carried by humans, pigs, or both, including rotoviruses, adenoviruses, hepatitis A, and hepatitis E. They also tried to identify bacteria such as salmonella and escherichia coli (e. coli), and parasites such as Giardia and cryptosporidium that could be causing the symptoms. All were ruled out.
Neurodegenerative diseases were considered specifically because of the similarity of symptoms and animal involvement thus included investigation of prion associated diseases such as bovine spongiform encephalopathy (BSE), chronic wasting disease (CWD), and variant Creutzfeldt–Jakob disease (vCJD). These all have highly transmissible pathogenic agents that induce brain damage. Since no pathogenic agent had been found, these diseases were ruled out as being related.
Next two very similar neuropathies were ruled out. Guillain–Barré syndrome (GBS) induces an acute autoimmune response which affects the Schwann cells in the peripheral nervous system. GBS is usually triggered by an infection that causes weakness and tingling that may lead to muscle loss. This condition may be life-threatening if muscle atrophy ascends to affect the pulmonary or cardiac systems. So far, no infectious agents have been found that relate to the current disease, progressive infammatory neuropathy. They looked at chronic inflammatory demyelinating polyneuropathy (CIDP) which is characterized by progressive weakness and sensory impairment in the arms and legs. Damage occurs to the myelin sheath in the peripheral nervous system. As doctors at the Mayo Clinic were beginning to note, the problem they were seeing in progressive inflammatory neuropathy was occurring in the spinal nerve roots.
Multifocal motor neuropathy is normally treated by receiving intravenous immunoglobulin (IVIG), which can in many cases be highly effective, or immunosuppressive therapy with cyclophosphamide or rituximab. Steroid treatment (prednisone) and plasmapheresis are no longer considered to be useful treatments; prednisone can exacerbate symptoms. IVIg is the primary treatment, with about 80% of patients responding, usually requiring regular infusions at intervals of 1 week to several months. Other treatments are considered in case of lack of response to IVIg, or sometimes because of the high cost of immunoglobulin. Subcutaneous immunoglobulin is under study as a less invasive, more-convenient alternative to IV delivery.
An initial comprehensive study of 24 known cases was conducted by multiple doctors from various disciplines at the Mayo Clinic. They identified the cause of this neurological disease to be occupational exposure to aerosolized pig neural tissue. Investigators from the Minnesota Department of Health (MDH) simultaneously determined that the 70 ppsi pressure used to liquefy and extract the pig brains caused the aerosolization of the pig neural tissue, sending it into the air in a fine mist. The workers closest in proximity to the "head" table, the area in the plant where high pressured air was used to evacuate the brain tissue from the pig's skull, were the most likely to be affected. The aerosolized mist was inhaled and readily absorbed into the workers' mucus membranes. The pig neural tissue was recognized by their systems as foreign and an immune response was initiated. The pig antigen was found most prominently in the nerve roots of the spine which were also swollen. Researchers determined that the irritation was due to the voltage-gated potassium channels being blocked. They identified 125 1-α-dendrotoxin as the antagonist that binds to and blocks the channels, causing an intracellular build-up of potassium ions which causes inflammation and irritation, and consequently, hyper-excitability in the peripheral nervous system. It is this hyper-excitability that leads to the tingling, numbness, pain, and weakness.
Researchers from the Mayo Clinic developed a mouse model that received twice daily liquefied pig neural tissue intranasally to replicate the symptoms that the workers were experiencing. Physiological testing indicated signature antibodies in the mouse model at 100% in potassium channel antibodies and myelin basic antibodies, and 91% in calcium channel antibodies. This model allowed the researchers to decipher what was causing these neurological symptoms. It was found that the potassium channels were being blocked so that inflammation was occurring at the nerve root and causing hyper-excitability down the peripheral nerves.
The most common cause of hemiparesis and hemiplegia is stroke. Strokes can cause a variety of movement disorders, depending on the location and severity of the lesion. Hemiplegia is common when the stroke affects the corticospinal tract. Other causes of hemiplegia include spinal cord injury, specifically Brown-Séquard syndrome, traumatic brain injury, or disease affecting the brain. As a lesion that results in hemiplegia occurs in the brain or spinal cord, hemiplegic muscles display features of the upper motor neuron syndrome. Features other than weakness include decreased movement control, clonus (a series of involuntary rapid muscle contractions), spasticity, exaggerated deep tendon reflexes and decreased endurance.
The incidence of hemiplegia is much higher in premature babies than term babies. There is also a high incidence of hemiplegia during pregnancy and experts believe that this may be related to either a traumatic delivery, use of forceps or some event which causes brain injury.
Other causes of hemiplegia in adults include trauma, bleeding, brain infections and cancers. Individuals who have uncontrolled diabetes, hypertension or those who smoke have a higher chance of developing a stroke. Weakness on one side of the face may occur and may be due to a viral infection, stroke or a cancer.
TAA is an old term for a constellation of elements that can lead to a mitochondrial optic neuropathy. The classic patient is a man with a history of heavy alcohol and tobacco consumption. Respectively, this combines nutritional mitochondrial impairment, from vitamin deficiencies (folate and B-12) classically seen in alcoholics, with tobacco-derived products, such as cyanide and ROS. It has been suggested that the additive effect of the cyanide toxicity, ROS, and deficiencies of thiamine, riboflavin, pyridoxine, and b12 result in TAA.
Brain related causes are less commonly associated with isolated vertigo and nystagmus but can still produce signs and symptoms, which mimic peripheral causes. Disequilibrium is often a prominent feature.
- Degenerative: age related decline in balance function
- Infectious: meningitis, encephalitis, epidural abscess, syphilis
- Circulatory: cerebral or cerebellar ischemia or hypoperfusion, stroke, lateral medullary syndrome (Wallenberg's syndrome)
- Autoimmune: Cogan syndrome
- Structural: Arnold-Chiari malformation, hydrocephalus
- Systemic: multiple sclerosis, Parkinson's disease
- Vitamin deficiency: Vitamin B12 deficiency
- CNS or posterior neoplasms, benign or malignant
- Neurological: Vertiginous epilepsy, abasia
- Other – There are a host of other causes of dizziness not related to the ear.
- Mal de debarquement is rare disorder of imbalance caused by being on board a ship. Patients suffering from this condition experience disequilibrium even when they get off the ship. Typically treatments for seasickness are ineffective for this syndrome.
- Motion sickness – a conflict between the input from the various systems involved in balance causes an unpleasant sensation. For this reason, looking out of the window of a moving car is much more pleasant than looking inside the vehicle.
- Migraine-associated vertigo
- Toxins, drugs, medications; it is also a known symptom of carbon monoxide poisoning.
Multifocal motor neuropathy (MMN) is a progressively worsening condition where muscles in the extremities gradually weaken. The disorder, a pure motor neuropathy syndrome, is sometimes mistaken for amyotrophic lateral sclerosis (ALS) because of the similarity in the clinical picture, especially if muscle fasciculations are present. MMN is thought to be autoimmune. It was first described in the mid-1980s.
Unlike ALS which affects both upper and lower motor nerves, MMN involves only lower motor nerves. Nevertheless, definitive diagnosis is often difficult, and many MMN patients labor for months or years under an ALS diagnosis before finally getting a determination of MMN.
MMN usually involves very little pain however muscle cramps, spasms and twitches can cause pain for some sufferers. MMN is not fatal, and does not diminish life expectation. Many patients, once undergoing treatment, only experience mild symptoms over prolonged periods, though the condition remains slowly progressive. MMN can however, lead to significant disability, with loss of function in hands affecting ability to work and perform everyday tasks, and "foot drop" leading to inability to stand and walk; some patients end up using aids like canes, splints and walkers.
Anterior interosseous syndrome or Kiloh-Nevin syndrome I is a medical condition in which damage to the anterior interosseous nerve (AIN), a motor branch of the median nerve, causes pain in the forearm and a characteristic weakness of the pincer movement of the thumb and index finger.
Most cases of AIN syndrome are due to a transient neuritis, although compression of the AIN can happen. Trauma to the median nerve have also been reported as a cause of AIN syndrome.
Although there is still controversy among upper extremity surgeons, AIN syndrome is now regarded as a neuritis (inflammation of the nerve) in most cases; this is similar to Parsonage–Turner syndrome. Although the exact etiology is unknown, there is evidence that it is caused by an immune mediated response.
Studies are limited, and no randomized controlled trials have been performed regarding the treatment of AIN syndrome. While the natural history of AIN syndrome is not fully understood, studies following patients who have been treated without surgery show that symptoms can resolve starting as late as one year after onset. Other retrospective studies have shown that there is no difference in outcome in surgically versus nonsurgically treated patients. Surgical decompression is rarely indicated in AIN syndrome. Indications for considering surgery include a known space-occupying lesion that is compressing the nerve (a mass) and persistent symptoms beyond 1 year of conservative treatment.
Cervical radiculopathy is less prevalent in the United States than lumbar radiculopathy with an occurrence rate of 83 cases per 100,000. According to the AHRQ’s 2010 National Statistics for cervical radiculopathy the most affected age group is between 45 and 64 years with 51.03% of incidents. Females are affected more frequently than males and account for 53.69% of cases. Private insurance was the payer in 41.69% of the incidents followed by Medicare with 38.81%. In 71.61% of cases the patients’ income was considered not low for their zipcode. Additionally over 50% of patients lived in large metropolitans (inner city or suburb). The South is the most severely affected region in the US with 39.27% of cases. According to a study performed in Minnesota, the most common manifestation of this set of conditions is the C7 monoradiculopathy, followed by C6.