Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The major cause of acute limb ischaemia is arterial thrombosis (85%), while embolic occlusion is responsible for 15% of cases. In rare instances, arterial aneurysm of the popliteal artery has been found to create a thrombosis or embolism resulting in ischaemia.
The best course of treatment varies from case to case. The physician must take into account the details in the case before deciding on the appropriate treatment. No treatment is effective for every patient.
Treatment depends on many factors, including:
- Location of lesions
- Anatomy of lesions
- Patient risk factors
- Procedural risk
- Clinical presentation of symptoms
- Duration of symptoms
- etc.
Traumatic injury to an extremity may produce partial or total occlusion of a vessel from compression, shearing or laceration. Acute arterial occlusion may develop as a result of arterial dissection in the carotid artery or aorta or as a result of iatrogenic arterial injury (e.g., after angiography).
The thrombi may dislodge and may travel anywhere in the circulatory system, where they may lead to pulmonary embolus, an acute arterial occlusion causing the oxygen and blood supply distal to the embolus to decrease suddenly. The degree and extent of symptoms depend on the size and location of the obstruction, the occurrence of clot fragmentation with embolism to smaller vessels, and the degree of peripheral arterial disease (PAD).
- Thromboembolism (blood clots)
- Embolism (foreign bodies in the circulation, e.g. amniotic fluid embolism)
Risk factors contributing to PAD are the same as those for atherosclerosis:
- Smoking – tobacco use in any form is the single most important modifiable cause of PAD internationally. Smokers have up to a tenfold increase in relative risk for PAD in a dose-response relationship. Exposure to second-hand smoke from environmental exposure has also been shown to promote changes in blood vessel lining (endothelium) which is a precursor to atherosclerosis. Smokers are 2 to 3 times more likely to have lower extremity peripheral arterial disease than coronary artery disease. More than 80%-90% of patients with lower extremity peripheral arterial disease are current or former smokers. The risk of PAD increases with the number of cigarettes smoked per day and the number of years smoked.
- Diabetes mellitus – causes between two and four times increased risk of PAD by causing endothelial and smooth muscle cell dysfunction in peripheral arteries. The risk of developing lower extremity peripheral arterial disease is proportional to the severity and duration of diabetes.
- Dyslipidemia – a high level of low-density lipoprotein (LDL cholesterol) and a low level of high-density lipoprotein (HDL cholesterol) in the blood) - elevation of total cholesterol, LDL cholesterol, and triglyceride levels each have been correlated with accelerated PAD. Correction of dyslipidemia by diet and/or medication is associated with a major improvement in rates of heart attack and stroke.
- Hypertension – elevated blood pressure is correlated with an increase in the risk of developing PAD, as well as in associated coronary and cerebrovascular events (heart attack and stroke). Hypertension increased the risk of intermittent claudication 2.5- to 4-fold in men and women, respectively.
- Risk of PAD also increases in individuals who are over the age of 50, male, obese, heart attack, or stroke or with a family history of vascular disease.
- Other risk factors which are being studied include levels of various inflammatory mediators such as C-reactive protein, fibrinogen, hyperviscosity, hypercoagulable state.
Non-occlusive disease has a poor prognosis with survival rate between 40-50%.
Peripheral arterial disease is more common in the following populations of people:
- All people who have leg symptoms with exertion (suggestive of claudication) or ischemic rest pain.
- All people aged 65 years and over regardless of risk factor status.
- All people between the age of 50 to 69 and who have a cardiovascular risk factor (particularly diabetes or smoking).
- Age less than 50 years, with diabetes and one other atherosclerosis risk factor (smoking, dyslipidemia, hypertension, or hyperhomocysteinemia).
- Individuals with an abnormal lower extremity pulse examination.
- Those with known atherosclerotic coronary, carotid, or renal artery disease.
- All people with a Framingham risk score 10%-20%
- All people who have previously experienced chest pain
Causes include:
- Thrombosis (approximately 40% of cases)
- Arterial embolism (approximately 40%)
- arteriosclerosis obliterans
Another cause of limb infarction is "skeletal muscle infarction" as a rare complication of long standing, poorly controlled diabetes mellitus.
With treatment, approximately 80% of patients are alive (approx. 95% after surgery) and approximately 70% of infarcted limbs remain vital after 6 months.
70% of patients with carotid arterial dissection are between the ages of 35 and 50, with a mean age of 47 years.
CT angiography would be helpful in differentiating occlusive from non-occlusive causes of mesenteric ischaemia.
Major risk factors for cerebral infarction are generally the same as for atherosclerosis: high blood pressure, Diabetes mellitus, tobacco smoking, obesity, and dyslipidemia. The American Heart Association/American Stroke Association (AHA/ASA) recommends controlling these risk factors in order to prevent stroke. The AHA/ASA guidelines also provide information on how to prevent stroke if someone has more specific concerns, such as Sickle-cell disease or pregnancy. It is also possible to calculate the risk of stroke in the next decade based on information gathered through the Framingham Heart Study.
The prognosis depends on prompt diagnosis (less than 12–24 hours and before gangrene) and the underlying cause:
- venous thrombosis: 32% mortality
- arterial embolism: 54% mortality
- arterial thrombosis: 77% mortality
- non-occlusive ischemia: 73% mortality.
In the case of prompt diagnosis and therapy, acute mesenteric ischemia can be reversible.
Thrombosis prevention is initiated with assessing the risk for its development. Some people have a higher risk of developing thrombosis and its possible development into thromboembolism. Some of these risk factors are related to inflammation. "Virchow's triad" has been suggested to describe the three factors necessary for the formation of thrombosis: stasis of blood, vessel wall injury, and altered blood coagulation. Some risk factors predispose for venous thrombosis while others increase the risk of arterial thrombosis.
Once considered uncommon, spontaneous carotid artery dissection is an increasingly recognised cause of stroke that preferentially affects the middle-aged.
The incidence of spontaneous carotid artery dissection is low, and incidence rates for internal carotid artery dissection have been reported to be 2.6 to 2.9 per 100,000.
Observational studies and case reports published since the early 1980s show that patients with spontaneous internal carotid artery dissection may also have a history of stroke in their family and/or hereditary connective tissue disorders, such as Marfan syndrome, Ehlers-Danlos syndrome, autosomal dominant polycystic kidney disease, pseudoxanthoma elasticum, fibromuscular dysplasia, and osteogenesis imperfecta type I. IgG4-related disease involving the carotid artery has also been observed as a cause.
However, although an association with connective tissue disorders does exist, most people with spontaneous arterial dissections do not have associated connective tissue disorders. Also, the reports on the prevalence of hereditary connective tissue diseases in people with spontaneous dissections are highly variable, ranging from 0% to 0.6% in one study to 5% to 18% in another study.
Internal carotid artery dissection can also be associated with an elongated styloid process (known as Eagle syndrome when the elongated styloid process causes symptoms).
The main causes of thrombosis are given in Virchow's triad which lists thrombophilia, endothelial cell injury, and disturbed blood flow.
Whether a cerebral infarction is thrombotic or embolic based, its pathophysiology, or the observed conditions and underlying mechanisms of the disease. In thrombotic ischemic stroke, a thrombus forms and blocks blood flow. A thrombus forms when the endothelium is activated by a variety of signals to result in platelet aggregation in the artery. This clump of platelets interacts with fibrin to form a platelet plug. This platelet plug grows into a thrombus, resulting in a stenotic artery. Thrombotic ischemia can occur in large or small blood vessels. In large vessels, the most common causes of thrombi are atherosclerosis and vasoconstriction. In small vessels, the most common cause is lipohyalinosis. Lipohyalinosis is when high blood pressure and aging causes a build-up of fatty hyaline matter in blood vessels. Atheroma formation can also cause small vessel thrombotic ischemic stroke.
An embolic stroke refers to the blockage of an artery by an embolus, a traveling particle or debris in the arterial bloodstream originating elsewhere. An embolus is most frequently a thrombus, but it can also be a number of other substances including fat (e.g. from bone marrow in a broken bone), air, cancer cells or clumps of bacteria (usually from infectious endocarditis). The embolus may be of cardiac origin due to Atrial fibrillation, Patent foramen ovale or from atherosclerotic plaque of another (or the same) large artery. Cerebral artery gas embolism (e.g. during ascent from a SCUBA dive) is also a possible cause of infarction (Levvett & Millar, 2008)
Mesenteric ischemia is a medical condition in which injury of the small intestine occurs due to not enough blood supply. It can come on suddenly, known as acute mesenteric ischemia, or gradually, known as chronic mesenteric ischemia. Acute disease often presents with sudden severe pain. Symptoms may come on more slowly in those with acute on chronic disease. Signs and symptoms of chronic disease include abdominal pain after eating, unintentional weight loss, vomiting, and being afraid of eating.
Risk factors include atrial fibrillation, heart failure, chronic renal failure, being prone to forming blood clots, and previous myocardial infarction. There are four mechanisms by which poor blood flow occurs: a blood clot from elsewhere getting lodged in an artery, a new blood clot forming in an artery, a blood clot forming in the superior mesenteric vein, and insufficient blood flow due to low blood pressure or spasms of arteries. Chronic disease is a risk factor for acute disease. The best method of diagnosis is angiography, with computer tomography (CT) being used when that is not available.
Treatment of acute ischemia may include stenting or medications to break down the clot provided at the site of obstruction by interventional radiology. Open surgery may also be used to remove or bypass the obstruction and may be required to remove any intestines that may have died. If not rapidly treated outcomes are often poor. Among those affected even with treatment the risk of death is 70% to 90%. In those with chronic disease bypass surgery is the treatment of choice. Those who have thrombosis of the vein may be treated with anticoagulation such as heparin and warfarin, with surgery used if they do not improve.
Acute mesenteric ischemia affects about five per hundred thousand people per year in the developed world. Chronic mesenteric ischemia affects about one per hundred thousand people. Most people affected are over 60 years old. Rates are about equal in males and females of the same age. Mesenteric ischemia was first described in 1895.
In medicine, May-Thurner syndrome (MTS), also known as the iliac vein compression syndrome, is a rare condition in which compression of the common venous outflow tract of the left lower extremity may cause discomfort, swelling, pain or blood clots, called deep venous thrombosis (DVT), in the iliofemoral vein.
The specific problem is compression of the left common iliac vein by the overlying right common iliac artery. This leads to pooling or stasis of blood, predisposing the individual to the formation of blood clots. Uncommon variations of MTS have been described, such as the right common iliac vein getting compressed by the right common iliac artery.
In the 21st century the May-Thurner syndrome definition has been expanded to a broader disease profile known as nonthrombotic iliac vein lesions (NIVL) which can involve both the right and left iliac veins as well as multiple other named venous segments. This syndrome frequently manifests as pain when the limb is dependent (hanging down the edge of a bed/chair) and/or significant swelling of the whole limb.
While some investigations suggest a possible beneficial effect of mesenchymal stem cells on heart and kidney reperfusion injury, to date, none have explored the role of stem cells in muscle tissue exposed to ischemia-reperfusion injury.
Stem cells have been implicated in the regeneration of skeletal muscle after traumatic and blast injuries, and have been shown to hone to muscle damaged after exercise.
Serum lactate level is a proxy measure of tissue oxygenation. When tissues do not have adequate oxygen delivery (i.e., are ischemic), they revert to less efficient metabolic processes, producing lactic acid.
Myoglobin is released from damaged muscle, as in the case of ischemia.
Serum creatinine and BUN may be elevated in the setting of Acute Kidney Injury.
May-Thurner syndrome (MTS) is thought to represent between two and five percent of lower-extremity venous disorders. May-Thurner syndrome is often unrecognized; however, current estimates are that this condition is three times more common in women than in men. The classic syndrome typically presents in the second to fourth decades of life. In the 21st century in a broader disease profile, the syndrome acts as a permissive lesion and becomes symptomatic when something else happens such as, following trauma, a change in functional status such as swelling following orthopaedic joint replacement.
It is important to consider May-Thurner syndrome in patients who have no other obvious reason for hypercoagulability and who present with left lower extremity thrombosis. To rule out other causes for hypercoagulation, it may be appropriate to check the antithrombin, protein C, protein S, factor V Leiden, and prothrombin G20210A.
Venography will demonstrate the classical syndrome when causing deep venous thrombosis.
May-Thurner syndrome in the broader disease profile known as nonthrombotic iliac vein lesions (NIVLs) exists in the symptomatic ambulatory patient and these lesions are usually not seen by venography. Morphologically, intravascular ultrasound (IVUS) has emerged as the best current tool in the broader sense. Functional testing such as duplex ultrasound, venous and interstitial pressure measurement and plethysmography may sometimes be beneficial. Compression of the left common iliac vein may be seen on pelvic CT.
In mostly European experience with 69 patients during 1996-2016, the 5- and 10-year survival rates for SCLS patients were 78% and 69%, respectively, but the survivors received significantly more frequent preventive treatment with IVIG than did non-survivors. Five- and 10-year survival rates in patients treated with IVIG were 91% and 77%, respectively, compared to 47% and 37% in patients not treated with IVIG. Moreover, better identification and management of this condition appears to be resulting in lower mortality and improving survival and quality-of-life results as of late.
Blue toe syndrome is a situation that may reflect atherothrombotic microembolism, causing transient focal ischaemia, occasionally with minor apparent tissue loss, but without diffuse forefoot ischemia. The development of blue or violaceous toes can also occur with trauma, cold-induced injury, disorders producing generalized cyanosis, decreased arterial flow, impaired venous outflow, and abnormal circulating blood.
The terms "blue toe syndrome", "grey toe syndrome" and "purple toe syndrome" are sometimes used interchangeably.
Studies may include echocardiography, thoracic and abdominal CT or MRI, peripheral arterial run off imaging studies, hypercoagulopathy labs, and interrogation of syndromes that lead to peripheral vascular pathology.
Cavernous sinus thrombosis has a mortality rate of less than 20% in areas with access to antibiotics. Before antibiotics were available, the mortality was 80–100%. Morbidity rates also dropped from 70% to 22% due to earlier diagnosis and treatment.