Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The term thanatophoric is Greek for "death bearing". Children with this condition are usually stillborn or die shortly after birth from respiratory failure, however a small number of individuals have survived into childhood and a very few beyond. Survivors have difficulty breathing on their own and require respiratory support such as high flow oxygen through a canula or ventilator support via tracheostomy. There may also be evidence of spinal stenosis and seizures.
The oldest known living TD survivor is a 29-year-old female. One male lived to be 26 years old. Another male lived to age 20. TD survivor, Chrisopher Álvarez, 18, is Colombian living in New York. Two children with TD aged 10 and 12, a male and a female, are known in Germany. There is also a 6-year-old male living with TD and two 1-year old males.
Osteogenesis imperfecta is a rare condition in which bones break easily. There are multiple genetic mutations in different genes for collagen that may result in this condition. It can be treated with some drugs to promote bone growth, by surgically implanting metal rods in long bones to strengthen them, and through physical therapy and medical devices to improve mobility.
It can be associated with missense mutations in fibroblast growth factor receptor-3. It is inherited in an autosomal dominant manner.
Gene based therapy is being studied. In June 2015, BioMarin announced positive results of their Phase 2 study, stating that 10 children experienced a mean increase of 50% in their annualized growth velocity.
Fibrochondrogenesis is quite rare. A 1996 study from Spain determined a national minimal prevalence for the disorder at 8 cases out of 1,158,067 live births.
A United Arab Emirates (UAE) University report, from early 2003, evaluated the results of a 5-year study on the occurrence of a broad range of osteochondrodysplasias. Out of 38,048 newborns in Al Ain, over the course of the study period, fibrochondrogenesis was found to be the most common of the recessive forms of osteochondrodysplasia, with a prevalence ratio of 1.05:10,000 births.
While these results represented the most common occurrence within the group studied, they do not dispute the rarity of fibrochondrogenesis. The study also included the high rate of consanguinous marriages as a prevailing factor for these disorders, as well as the extremely low rate of diagnosis-related pregnancy terminations throughout the region.
Achondroplasia is one of 19 congenital conditions with similar presentations, such as osteogenesis imperfecta, multiple epiphyseal dysplasia tarda, achondrogenesis, osteopetrosis, and thanatophoric dysplasia. This makes estimates of prevalence difficult, with changing and subjective diagnostic criteria over time. One detailed and long-running study in the Netherlands found that the prevalence determined at birth was only 1.3 per 100,000 live births. Another study at the same time found a rate of 1 per 10,000.
Early journal reports of boomerang dysplasia suggested X-linked recessive inheritance, based on observation and family history. It was later discovered, however, that the disorder is actually caused by a genetic mutation fitting an autosomal dominant genetic profile.
Autosomal dominant inheritance indicates that the defective gene responsible for a disorder is located on an autosome, and only one copy of the gene is sufficient to cause the disorder, when inherited from a parent who has the disorder.
Boomerang dysplasia, although an autosomal dominant disorder, is "not" inherited because those afflicted do not live beyond infancy. They cannot pass the gene to the next generation.
"Achondroplasia" is a type of autosomal dominant genetic disorder that is the most common cause of dwarfism. Achondroplastic dwarfs have short stature, with an average adult height of 131 cm (4 feet, 3 inches) for males and 123 cm (4 feet, 0 inches) for females.
The prevalence is approximately 1 in 25,000 births.
Fibrochondrogenesis is inherited in an autosomal recessive pattern. This means that the defective gene responsible for the disorder is located on an autosome, and two copies of the gene — one copy inherited from each parent — are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder each carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder. Currently, no specific genetic mutation has been established as the cause of fibrochondrogenesis.
Omphalocele is a congenital feature where the abdominal wall has an opening, partially exposing the abdominal viscera (typically, the organs of the gastrointestinal tract). Fibrochondrogenesis is believed to be related to omphalocele
type III, suggesting a possible genetic association between the two disorders.
Spondyloepiphyseal dysplasia congenita (abbreviated to SED more often than SDC) is a rare disorder of bone growth that results in dwarfism, characteristic skeletal abnormalities, and occasionally problems with vision and hearing. The name of the condition indicates that it affects the bones of the spine (spondylo-) and the ends of bones (epiphyses), and that it is present from birth (congenital). The signs and symptoms of spondyloepiphyseal dysplasia congenita are similar to, but milder than, the related skeletal disorders achondrogenesis type 2 and hypochondrogenesis. Spondyloepiphyseal dysplasia congenita is a subtype of collagenopathy, types II and XI.
Spondyloepiphyseal dysplasia congenita is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. The protein made by this gene forms type II collagen, a molecule found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). Type II collagen is essential for the normal development of bones and other connective tissues. Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones from developing properly and causes the signs and symptoms of this condition.
Spondyloepiphyseal dysplasia congenita is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder.
This is an autosomal recessive osteochondrodysplasia that maps to chromosome 1q21. Deficiency of Cathepsin K, a cysteine protease in osteoclasts, is known to cause this condition. Cathepsin K became a much sought-after drug target in osteoporosis after the cause of pycnodysostosis was discovered. The disease consistently causes short stature. The height of adult males with the disease is less than . Adult females with the syndrome are even shorter.
The disease has been named Toulouse-Lautrec syndrome, after the French artist Henri de Toulouse-Lautrec, who may have had the disease. In 1996, the defective gene responsible for pycnodysostosis was located, offering accurate diagnosis, carrier testing and a more thorough understanding of this disorder.
This condition is one of a spectrum of skeletal disorders caused by mutations in the "COL2A1" gene. The protein made by this gene forms type II collagen, a molecule found mostly in cartilage and in the clear gel that fills the eyeball (the vitreous). Type II collagen is essential for the normal development of bones and other connective tissues. Mutations in the "COL2A1" gene interfere with the assembly of type II collagen molecules, which prevents bones from developing properly and causes the signs and symptoms of this condition.
This condition is inherited in an autosomal dominant pattern, which means one copy of the altered gene is sufficient to cause the disorder.
Mesomelia refers to conditions in which the middle parts of limbs are disproportionately short. When applied to skeletal dysplasias, mesomelic dwarfism describes generalised shortening of the forearms and lower legs. This is in contrast to rhizomelic dwarfism in which the upper portions of limbs are short such as in achondroplasia.
Forms of mesomelic dwarfism currently described include:
- Langer mesomelic dysplasia
- Ellis–van Creveld syndrome
- Robinow syndrome
- Léri–Weill dyschondrosteosis
A recent article in 2015 reported a persistent notochord in a fetus at 23 weeks of gestation. The fetus had an abnormal spine, shortened long bones and a left clubfoot. After running postmortem tests and ultrasound, the researchers believed that the fetus suffered from hypochondrogenesis. Hypochondrogenesis is caused when type II collagen is abnormally formed due to a mutation in the COL2A1 gene. Normally, the cartilaginous notochord develops into the bony vertebrae in a human body. The COL2A1 gene results in malformed type II collagen, which is essential in the transition from collagen to bone. This is the first time that researchers found a persistent notochord in a human body due to a COL2A1 mutation.
Life expectancy for individuals with hypochondroplasia is normal; the maximum height is about 147 cm or 4.8 ft.
Many types of dwarfism are currently impossible to prevent because they are genetically caused. Genetic conditions that cause dwarfism may be identified with genetic testing, by screening for the specific variations that result in the condition. However, due to the number of causes of dwarfism, it may be impossible to determine definitively if a child will be born with dwarfism.
Dwarfism resulting from malnutrition or a hormonal abnormality may be treated with an appropriate diet or hormonal therapy. Growth hormone deficiency may be remedied via injections of human growth hormone (HGH) during early life.
Parastremmatic dwarfism is apparent at birth, with affected infants usually being described as "stiff", or as "twisted dwarfs" when the skeletal deformities and appearance of dwarfism further present themselves. Skeletal deformities usually develop in the sixth to twelfth month of an infant's life. The deformities may be attributed to osteomalacia, a lack of bone mineralization.
Mutations in the "Filamin B (FLNB)" gene cause boomerang dysplasia. FLNB is a cytoplasmic protein that regulates intracellular communication and signalling by cross-linking the protein actin to allow direct communication between the cell membrane and cytoskeletal network, to control and guide proper skeletal development. Disruptions in this pathway, caused by FLNB mutations, result in the bone and cartilage abnormalities associated with boomerang dysplasia.
Chondrocytes, which also have a role in bone development, are susceptible to these disruptions and either fail to undergo ossification, or ossify incorrectly.
FLNB mutations are involved in a spectrum of lethal bone dysplasias. One such disorder, atelosteogenesis type I, is very similar to boomerang dysplasia, and several symptoms of both often overlap.
It is thought that chondrodystrophy is caused by an autosomal, recessive allele. To avoid a potential "lethal dose," both parents must submit to genetic testing. If a child is conceived with another carrier the outcome may be lethal, or the child may suffer from chondrodystrophy or dwarfism. This means that even though both parents are completely normal in height, the child will have one of the two types of skeletal dysplasia. Type 1 (short limb dysplasia), the more common of the two, is characterised by a long trunk and extremely shortened extremities. Type 2, short-trunk dysplasia, is characterised by a shortened trunk and normal size extremities. Those affected by chondrodystrophy may also experience metabolic and hormonal disorders, both of which may be monitored and controlled by hormonal injections.
Animals have been bred specifically to elicit chondrodystrophic traits for research purposes and to more easily allow animals to free-roam without escaping by, for example, jumping over ranch fences. One example of this is the Ancon sheep, which was first bred from a lamb born in 1791 with naturally occurring chondrodystrophy.
The incidence is less than 1/1.000.000. Fewer than 50 cases have been reported so far.
At the core of the disorder there is a homozygous or compound heterozygous mutation or deletion of the SHOX (Short Stature Homeobox), SHOXY (Short Stature Homeobox Y-linked) or PAR1 (where SHOX enhancer elements are located) genes, which is inherited in a pseudosomal recessive manner.
There are as yet no effective treatments for primordial dwarfism. It is known that PD is caused by inheriting a mutant gene from each parent. The lack of normal growth in the disorder is not due to a deficiency of growth hormone, as in hypopituitary dwarfism. Administering growth hormone, therefore, has little or no effect on the growth of the individual with primordial dwarfism, except in the case of Russell Silver Syndrome. Individuals with RSS respond favorably to growth hormone treatment, this fact is supported by The Magic Foundation. Children with RSS that are treated with growth hormone before puberty may achieve several inches of additional height. In January 2008, it was published that mutations in the pericentrin gene (PCNT) were found to cause primordial dwarfism. Pericentrin has a role in cell division, proper chromosome segregation, and cytokinesis.
Ischiopatellar dysplasia is often considered a familial condition. Ischiopatellar dysplasia has been identified on region 5.6 cM on chromosome 17q22. Mutations in the TBX4 (T-box protein 4) gene have been found to cause ischiopatellar dysplasia due to the essential role TBX4 plays in lower limb development since TBX4 is a transcription factor.
Parastremmatic dwarfism is caused by a missense mutation (where one amino acid is replaced by another in a gene sequence) in the "TRPV4" gene, located on the long arm of human chromosome 12, at 12q24.11. The mutation is in exon 11 of the gene, and is labelled R594H; this means that the codon (the code for an amino acid molecule) for arginine was erroneously substituted by a codon for histidine at position 594 in that exon. This same mutation in the "TRVP4" gene is known to cause the Kozlowski type of spondylometaphyseal dysplasia.
Parastremmatic dwarfism is inherited in an autosomal dominant manner, which means that the defective gene responsible for the disease is located on an autosome (chromosome 12 is an autosome), and one copy of the defective gene is sufficient to cause the disorder when inherited from a parent who also has the disorder.