Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The majority of patients present in their mid-30s to late 40s. This is likely due to a combination of the slow growth of the bone and the decreased participation in activities associated with surfer's ear past the 30's. However surfer's ear is possible at any age and is directly proportional to the amount of time spent in cold, wet, windy weather without adequate protection.
The normal ear canal is approximately 7mm in diameter and has a volume of approximately 0.8 ml (approximately one-sixth of a teaspoon). As the condition progresses the diameter narrows and can even close completely if untreated, although sufferers generally seek help once the passage has constricted to 0.5-2mm due to the noticeable hearing impairment. While not necessarily harmful in and of itself, constriction of the ear canal from these growths can trap debris, leading to painful and difficult to treat infections.
The widespread use of wetsuits has allowed people to surf in much colder waters, which has increased the incidence and severity of surfer's ear for people who do not properly protect their ears.
- Avoid activity during extremely cold or windy conditions.
- Keep the ear canal as warm and dry as possible.
- Ear plugs
- Wetsuit hood
- Swim cap
- Diving helmet
Headgear called a "scrum cap" in rugby, or simply "headgear" or earguard in wrestling and other martial arts, that protects the ears is worn to help prevent this condition. For some athletes, however, a cauliflower ear is considered a badge of courage or experience.
Prominent ear, otapostasis or bat ear is an abnormally protruding human ear. It may be unilateral or bilateral. The concha is large with poorly developed antihelix and scapha. It is the result of malformation of cartilage during primitive ear development in intrauterine life. The deformity can be corrected anytime after 6 years. The surgery is preferably done at the earliest in order to avoid psychological distress. Correction by otoplasty involves changing the shape of the ear cartilage so that the ear is brought closer to the side of the head. The skin is not removed, but the shape of the cartilage is altered. The surgery does not affect hearing. It is done for cosmetic purposes only. The complications of the surgery, though rare, are keloid formation, hematoma formation, infection and asymmetry between the ears.
Because an acute hematoma can lead to cauliflower ear, prompt evacuation of the blood is needed to prevent permanent deformity. The outer ear is prone to infections, so antibiotics are usually prescribed. Pressure is applied by bandaging, helping the skin and the cartilage to reconnect. Without medical intervention the ear can suffer serious damage. Disruption of the ear canal is possible. The outer ear may wrinkle, and can become slightly pale due to reduced blood flow; hence the common term "cauliflower ear". Cosmetic procedures are available that can possibly improve the appearance of the ear.
Not much research has been done on the epidemiology of congenital trigger thumbs. There are a few reports on the incidence in their respective studies. The most recent data comes from a Japanese study by Kukichi and Ogino where they found an incidence 3.3 trigger thumbs per 1,000 live births in 1 year old children.
Hemifacial microsomia (HFM) is a congenital disorder that affects the development of the lower half of the face, most commonly the ears, the mouth and the mandible. It usually occurs on one side of the face, but both sides are sometimes affected. If severe, it may result in difficulties in breathing due to obstruction of the trachea—sometimes even requiring a tracheotomy. With an incidence in the range of 1:3500 to 1:4500, it is the second most common birth defect of the face, after cleft lip and cleft palate. HFM shares many similarities with Treacher Collins syndrome.
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
Macrostomia, (from the Greek prefix "makro-" meaning "large" and from Greek , "mouth") refers to a mouth that is unusually wide.
Macrostomia is characterized as a physical abnormality that causes clefts to form on the face of affected individuals. These clefts can form on either or both sides of the face, but they are most commonly seen on the right cheek and have a higher rate of occurrence in males. Macrostomia is very irregular and on average occurs only once in every 150,000 to 300,000 live births. It's unusual for macrostomia to occur on its own and it is included as a symptom for many diseases including craniofacial microsomia. The clefts result from improper development and fusion of the mandibular and maxillary processes. The clefts cause problems with facial muscle development. The origin of macrostomia is not yet fully understood it could have multiple causes.
In one study, the number of new cases of cholesteatoma in Iowa was estimated in 1975–6 to be just under one new case per 10,000 citizens per year. Cholesteatoma affects all age groups, from infants through to the elderly. The peak incidence occurs in the second decade.
Aural atresia is the underdevelopment of the middle ear and canal and usually occurs in conjunction with microtia. Atresia occurs because patients with microtia may not have an external opening to the ear canal, though. However, the cochlea and other inner ear structures are usually present. The grade of microtia usually correlates to the degree of development of the middle ear.
Microtia is usually isolated, but may occur in conjunction with hemifacial microsomia, Goldenhar Syndrome or Treacher-Collins Syndrome. It is also occasionally associated with kidney abnormalities (rarely life-threatening), and jaw problems, and more rarely, heart defects and vertebral deformities.
Anotia ("no ear") describes a rare congenital deformity that involves the complete absence of the pinna, the outer projected portion of the ear, and narrowing or absence of the ear canal. This contrasts with microtia, in which a small part of the pinna is present. Anotia and microtia may occur unilaterally (only one ear affected) or bilaterally (both ears affected). This deformity results in conductive hearing loss, deafness.
"20% to 40% of children with microtia/anotia will have additional defects that could suggest a syndrome."
Treacher-Collins Syndrome: (TCS) A congenital disorder caused by a defective protein known as treacle, and is characterized by craniofacial deformities; malformed or absent ears are also seen in this syndrome. The effects may be mild, undiagnosed to severe, leading to death. Because the ear defects are much different in this disorder and not only affect the outer ear, but the middle ear as well, reconstructive surgery may not help with the child's hearing and in this case a Bone Anchored Hearing Aid would be best. BAHA will only work, however if the inner ear and nerve are intact.
Goldenhar Syndrome: A rare congenital birth defect that causes abnormalities of facial development. also known as Oculoauricular Dysplasia. The facial anomalies include underdeveloped, asymmetric half of the face. The defect is capable of affecting tissue, muscle, and the underlying bone structure of the side of the face with the abnormality.
Ablepharon-macrostomia Syndrome: (AMS) A rare genetic disorder characterized by various physical anomalies which affect the craniofacial area, the skin, the fingers, and the genitals.
There is no treatment to correct an enlarged vestibular aqueduct. Any hearing loss will need management with amplification and support in education and at work. If the hearing loss becomes severe to profound cochlear implants can be of significant value. Vestibular disturbance is usually short-lived and associated with head trauma but significant vestibular hypofunction may require rehabilitation.
People with enlarged vestibular aqueducts are advised to avoid head trauma where possible. This usually means avoiding contact sports such as boxing and rugby, but also horse riding, trampolining and other sports where head injury may occur. Some have symptoms when flying and should limit these activities if affected.
Microtia is a congenital deformity where the pinna (external ear) is underdeveloped. A completely undeveloped pinna is referred to as anotia. Because microtia and anotia have the same origin, it can be referred to as microtia-anotia. Microtia can be unilateral (one side only) or bilateral (affecting both sides). Microtia occurs in 1 out of about 8,000–10,000 births. In unilateral microtia, the right ear is most commonly affected. It may occur as a complication of taking Accutane (isotretinoin) during pregnancy.
Environmental factors refer for example to maternal smoking and the maternal exposure to amine-containing drugs. Several research groups have found evidence that these environmental factors are responsible for an increase in the risk of craniosynostosis, likely through effects on fibroblast growth factor receptor genes.
On the other hand, a recent evaluation of valproic acid (an anti-epilepticum), which has been implicated as a causative agent, has shown no association with craniosynostosis.
Certain medication (like amine-containing drugs) can increase the risk of craniosynostosis when taken during pregnancy, these are so-called teratogenic factors.
Some over-the-counter as well as prescription drugs and certain industrial chemicals are ototoxic. Exposure to
these can result in temporary or permanent hearing loss.
Some medications cause irreversible damage to the ear, and are limited in their use for this reason. The most important group is the aminoglycosides (main member gentamicin). A rare mitochondrial mutation, m.1555A>G, can increase an individual's susceptibility to the ototoxic effect of aminoglycosides. Long term hydrocodone (Vicodin) abuse is known to cause rapidly progressing sensorineural hearing loss, usually without vestibular symptoms. Methotrexate, a chemotherapy agent, is also known to cause hearing loss. In most cases hearing loss does not recover when the drug is stopped. Paradoxically, methotrexate is also used in the treatment of autoimmune-induced inflammatory hearing loss.
Various other medications may reversibly degrade hearing. This includes loop diuretics, sildenafil (Viagra), high or sustained dosing of NSAIDs (aspirin, ibuprofen, naproxen, and various prescription drugs: celecoxib, etc.), quinine, and macrolide antibiotics (erythromycin, etc.).
Prolonged or repeated environmental or work-related exposure to ototoxic chemicals can also result in sensorineural hearing loss. Some of these chemicals are:
- butyl nitrite - chemical used recreationally known as 'poppers'
- carbon disulfide - a solvent used as a building block in many organic reactions
- styrene, an industrial chemical precursor of polystyrene, a plastic
- carbon monoxide, a poisonous gas resulting from incomplete combustion
- heavy metals: tin, lead, manganese, mercury
- hexane, an industrial solvent and one of the significant constituents of gasoline
- ethylbenzene, an industrial solvent used in the production of styrene
- toluene and xylene, highly poisonous petrochemical solvents. Toluene is a component of high-octane gasolne; xylene is used in the production of polyester fibers and resins.
- trichloroethylene, an industrial degreasing solvent
- Organophosphate pesticides
There are 4 distinct variations of macrostomia. Classifications are a complete lateral facial cleft, simple macrostomia, macrostomia with diastasis of the facial musculature, and isolated facial musculature diastasis. Each has a different physical appearance with varying levels of severity.
The cleft associated with macrostomia is associated with improper or failed fusion of the mandibular and maxillary processes during embryonic development. This can lead to a variety of abnormalities involving skin, subcutaneous tissue, facial muscles, and the mucous membrane. The severity of each abnormality can vary from minor to severe. Environmental contaminants may play a role in causing macrostomia. Many affected individuals were found in Lagos, an industrial area of Nigeria, where water supplies are known to be contaminated by improper disposal of industrial and domestic waste.
Several studies have reported that life expectancy appears to be normal for people with CCD.
Environmental influences may also cause, or interact with genetics to produce, orofacial clefting. An example of how environmental factors might be linked to genetics comes from research on mutations in the gene "PHF8" that cause cleft lip/palate (see above). It was found that PHF8 encodes for a histone lysine demethylase, and is involved in epigenetic regulation. The catalytic activity of PHF8 depends on molecular oxygen, a fact considered important with respect to reports on increased incidence of cleft lip/palate in mice that have been exposed to hypoxia early during pregnancy. In humans, fetal cleft lip and other congenital abnormalities have also been linked to maternal hypoxia, as caused by e.g. maternal smoking, maternal alcohol abuse or some forms of maternal hypertension treatment. Other environmental factors that have been studied include: seasonal causes (such as pesticide exposure); maternal diet and vitamin intake; retinoids — which are members of the vitamin A family; anticonvulsant drugs; nitrate compounds; organic solvents; parental exposure to lead; alcohol; cigarette use; and a number of other psychoactive drugs (e.g. cocaine, crack cocaine, heroin).
Current research continues to investigate the extent to which folic acid can reduce the incidence of clefting.
These are much more common in premature babies, particularly those under 1500 g at birth. Premature birth can be associated with problems that result in sensorineural hearing loss such as anoxia or hypoxia(poor oxygen levels), jaundice, intracranial haemorrhages, meningitis. Fetal alcohol syndrome is reported to cause hearing loss in up to 64% of infants born to alcoholic mothers, from the ototoxic effect on the developing fetus, plus malnutrition during pregnancy from the excess alcohol intake.
It is unclear whether the cause of the trigger thumb is congenital or acquired. The occurrence of bilateral incidence and trigger thumbs in both children of twins are an indication for a congenital cause. Trigger thumb in children is also associated with trisomy of chromosome 13. For these reasons it was assumed that trigger thumbs in children are to be of congenital cause. However, more and more evidence which point towards an acquired cause have been found in recent studies. Therefore the name pediatric trigger thumb is also widely used (and currently preferred by some) for the same disorder.
It is important that the patient attend periodic follow-up checks, because even after careful microscopic surgical removal, cholesteatomas may recur. Such recurrence may arise many years, or even decades, after treatment.
A "residual cholesteatoma" may develop if the initial surgery failed to completely remove the original; residual cholesteatomas typically become evident within the first few years after the initial surgery.
A "recurrent cholesteatoma" is a new cholesteatoma that develops when the underlying causes of the initial cholesteatoma are still present. Such causes can include, for example, poor eustachian tube function, which results in retraction of the ear drum, and failure of the normal outward migration of skin.
In a retrospective study of 345 patients with middle ear cholesteatoma operated on by the same surgeon, the overall 5-year recurrence rate was 11.8%. In a different study with a mean follow-up period of 7.3 years, the recurrence rate was 12.3%, with the recurrence rate being higher in children than in adults.
Individuals with Nager syndrome typically have the malformations of the auricle, external auditory canal, and middle ear, including the ossicles. These malformations were found in 80% of individuals with Nager syndrome. Inner ear malformations, however, are not typically seen in this population. Middle ear disease is common among individuals with Nager syndrome. Chronic otitis media and Eustachian tube deformity can result in conductive hearing loss. For this reason, early detection and treatment for middle ear disease is crucial in this population. Sensorineural hearing loss is not a typical characteristic of Nager syndrome; however, a subset of individuals present with a mixed hearing loss, due to a progressive sensorineural component combined with the typical conductive hearing loss (Herrman "et al.", 2005).
It is usually autosomal dominant, but in some cases the cause is not known. It occurs due to haploinsufficiency caused by mutations in the CBFA1 gene (also called Runx2), located on the short arm of chromosome 6, which encodes transcription factor required for osteoblast differentiation. It results in delayed ossification of midline structures of the body, particularly membranous bone.
A new article reports that the CCD cause is thought to be due to a CBFA1 (core binding factor activity 1) gene defect on the short arm of chromosome 6p21 . CBFA1 is vital for differentiation of stem cells into osteoblasts, so any defect in this gene will cause defects in membranous and endochondral bone formation.