Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Current research is aimed at studying large cohorts of people with CVID in an attempt to better understand age of onset, as well as mechanism, genetic factors, and progression of the disease.
Funding for research in the US is provided by the National Institutes of Health. Key research in the UK was previously funded by the Primary Immunodeficiency Association (PiA) until its closure in January 2012, and funding is raised through the annual Jeans for Genes campaign. Current efforts are aimed at studying the following:
- Causes of complications. Little is known about why such diverse complications arise during treatment
- Underlying genetic factors. Though many polymorphisms and mutations have been identified, their respective roles in CVID development are poorly understood, and not represented in all people with CVID.
- Finding new ways to study CVID. Given that CVID arises from more than one gene, gene knock-out methods are unlikely to be helpful. It is necessary to seek out disease related polymorphisms by screening large populations of people with CVID, but this is challenging given the rarity of the disease.
CVID has an estimated prevalence of about 1:50,000 in caucasians. The disease seems to be less prevalent amongst Asians and African-Americans. Males and females are equally affected; however, among children, boys predominate. A recent study of people in European with primary immunodeficiencies found that 30% had CVID, as opposed to a different immunodeficiency. 10-25% of people inherited the disease, typically through autosomal-dominant inheritance. Given the rarity of the disease, it is not yet possible to generalize on disease prevalence among ethnic and racial groups. CVID shortens the life-span; the median age of death for men and women is 42 and 44 years old, respectively. Those people with accompanying disorders had the worst prognosis and those people with CVID only had frequent infections had the longest survival rates, with life expectancy almost equalling that of the general UK population. Additionally, people with CVID with one or more noninfectious complications have an 11 times higher risk of death as compared to people with only infections.
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
A survey of 10,000 American households revealed that the prevalence of diagnosed primary immunodeficiency approaches 1 in 1200. This figure does not take into account people with mild immune system defects who have not received a formal diagnosis.
Milder forms of primary immunodeficiency, such as selective immunoglobulin A deficiency, are fairly common, with random groups of people (such as otherwise healthy blood donors) having a rate of 1:600. Other disorders are distinctly more uncommon, with incidences between 1:100,000 and 1:2,000,000 being reported.
Secondary immunodeficiencies, also known as acquired immunodeficiencies, can result from various immunosuppressive agents, for example, malnutrition, aging, particular medications (e.g., chemotherapy, disease-modifying antirheumatic drugs, immunosuppressive drugs after organ transplants, glucocorticoids) and environmental toxins like mercury and other heavy metals, pesticides and petrochemicals like styrene, dichlorobenzene, xylene, and ethylphenol. For medications, the term "immunosuppression" generally refers to both beneficial and potential adverse effects of decreasing the function of the immune system, while the term "immunodeficiency" generally refers solely to the adverse effect of increased risk for infection.
Many specific diseases directly or indirectly cause immunosuppression. This includes many types of cancer, particularly those of the bone marrow and blood cells (leukemia, lymphoma, multiple myeloma), and certain chronic infections. Immunodeficiency is also the hallmark of acquired immunodeficiency syndrome (AIDS), caused by the human immunodeficiency virus (HIV). HIV directly infects a small number of T helper cells, and also impairs other immune system responses indirectly.
Various hormonal and metabolic disorders can also result in immune deficiency including anemia, hypothyroidism, diabetes and hypoglycemia.
Smoking, alcoholism and drug abuse also depress immune response.
The cause of immunodeficiency varies depending on the nature of the disorder. The cause can be either genetic or acquired by malnutrition and poor sanitary conditions. Only for some genetic causes, the exact genes are known. Although there is no true discrimination to who this disease affects, the genes are passed from mother to child, and on occasion from father to child. Women tend not to show symptoms due to their second X chromosome not having the mutation while man are symptomatic, due to having one X chromosome.
Primary immune deficiency diseases are those caused by inherited genetic mutations. Secondary or acquired immune deficiencies are caused by something outside the body such as a virus or immune suppressing drugs.
Primary immune diseases are at risk to an increased susceptibility to, and often recurrent ear infections, pneumonia, bronchitis, sinusitis or skin infections. Immunodeficient patients may less frequently develop abscesses of their internal organs, autoimmune or rheumatologic and gastrointestinal problems.
- Primary immune deficiencies
- Severe combined immunodeficiency (SCID)
- DiGeorge syndrome
- Hyperimmunoglobulin E syndrome (also known as Job’s Syndrome)
- Common variable immunodeficiency (CVID): B-cell levels are normal in circulation but with decreased production of IgG throughout the years, so it is the only primary immune disorder that presents onset in the late teens years.
- Chronic granulomatous disease (CGD): a deficiency in NADPH oxidase enzyme, which causes failure to generate oxygen radicals. Classical recurrent infection from catalase positive bacteria and fungi.
- Wiskott-Aldrich syndrome (WAS)
- Autoimmune lymphoproliferative syndrome (ALPS)
- Hyper IgM syndrome: X-linked disorder that causes a deficiency in the production of CD40 ligand on activated T-cells. This increases the production and release of IgM into circulation. The B-cell and T-cell numbers are within normal limits. Increased susceptibility to extracellular bacteria and opportunistic infections.
- Leukocyte adhesion deficiency (LAD)
- NF-κB Essential Modifier (NEMO) Mutations
- Selective immunoglobulin A deficiency: the most common defect of the humoral immunity, characterized by a deficiency of IgA. Produces repeating sino-pulmonary and gastrointestinal infections.
- X-linked agammaglobulinemia (XLA; also known as Bruton type agammaglobulinemia): characterized by a deficiency in tyrosine kinase enzyme that blocks B-cell maturation in the bone marrow. No B-cells are produced to circulation and thus, there are no immunoglobulin classes, although there tends to be a normal cell-mediated immunity.
- X-linked lymphoproliferative disease (XLP)
- Ataxia-telangiectasia
- Secondary immune deficiencies
- AIDS
Serology (detection on antibodies to a specific pathogen or antigen) is often used to diagnose viral diseases. Because XLA patients lack antibodies, these tests always give a negative result regardless of their real condition. This applies to standard HIV tests. Special blood tests (such as the western blot based test) are required for proper viral diagnosis in XLA patients.
It is not recommended and dangerous for XLA patients to receive live attenuated vaccines such as live polio, or the measles, mumps, rubella (MMR vaccine). Special emphasis is given to avoiding the oral live attenuated SABIN-type polio vaccine that has been reported to cause polio to XLA patients. Furthermore, it is not known if active vaccines in general have any beneficial effect on XLA patients as they lack normal ability to maintain immune memory.
XLA patients are specifically susceptible to viruses of the Enterovirus family, and mostly to: polio virus, coxsackie virus (hand, foot, and mouth disease) and Echoviruses. These may cause severe central nervous system conditions as chronic encephalitis, meningitis and death. An experimental anti-viral agent, pleconaril, is active against picornaviruses. XLA patients, however, are apparently immune to the Epstein-Barr virus (EBV), as they lack mature B cells (and so HLA co-receptors) needed for the viral infection. Patients with XLA are also more likely to have a history of septic arthritis.
It is not known if XLA patients are able to generate an allergic reaction, as they lack functional IgE antibodies.There is no special hazard for XLA patients in dealing with pets or outdoor activities. Unlike in other primary immunodeficiencies XLA patients are at no greater risk for developing autoimmune illnesses.
Agammaglobulinemia (XLA) is similar to the primary immunodeficiency disorder Hypogammaglobulinemia (CVID), and their clinical conditions and treatment are almost identical. However, while XLA is a congenital disorder, with known genetic causes, CVID may occur in adulthood and its causes are not yet understood.
XLA was also historically mistaken as Severe Combined Immunodeficiency (SCID), a much more severe immune deficiency ("Bubble boys").A strain of laboratory mouse, XID, is used to study XLA. These mice have a mutated version of the mouse Btk gene, and exhibit a similar, yet milder, immune deficiency as in XLA.
An allergy is an abnormal immune reaction to a harmless antigen.
- Seasonal allergy
- Mastocytosis
- Perennial allergy
- Anaphylaxis
- Food allergy
- Allergic rhinitis
- Atopic dermatitis
X-linked agammaglobulinemia (XLA) is a rare genetic disorder discovered in 1952 that affects the body's ability to fight infection. As the form of agammaglobulinemia that is X-linked, it is much more common in males. In people with XLA, the white blood cell formation process does not generate mature B cells, which manifests as a complete or near-complete lack of proteins called gamma globulins, including antibodies, in their bloodstream. B cells are part of the immune system and normally manufacture antibodies (also called immunoglobulins), which defend the body from infections by sustaining a humoral immunity response. Patients with untreated XLA are prone to develop serious and even fatal infections. A mutation occurs at the Bruton's tyrosine kinase (Btk) gene that leads to a severe block in B cell development (at the pre-B cell to immature B cell stage) and a reduced immunoglobulin production in the serum. Btk is particularly responsible for mediating B cell development and maturation through a signaling effect on the B cell receptor BCR. Patients typically present in early childhood with recurrent infections, in particular with extracellular, encapsulated bacteria. XLA is deemed to have a relatively low incidence of disease, with an occurrence rate of approximately 1 in 200,000 live births and a frequency of about 1 in 100,000 male newborns. It has no ethnic predisposition. XLA is treated by infusion of human antibody. Treatment with pooled gamma globulin cannot restore a functional population of B cells, but it is sufficient to reduce the severity and number of infections due to the passive immunity granted by the exogenous antibodies.
XLA is caused by a mutation on the X chromosome of a single gene identified in 1993 which produces an enzyme known as Bruton's tyrosine kinase, or Btk. XLA was first characterized by Dr. Ogden Bruton in a ground-breaking research paper published in 1952 describing a boy unable to develop immunities to common childhood diseases and infections. It is the first known immune deficiency, and is classified with other inherited (genetic) defects of the immune system, known as primary immunodeficiency disorders.
Treatment is by parenteral administration of gamma globulins, either monthly intravenously, or, more recently, by weekly self-administered hypodermoclysis. In either case, mild allergic reactions (generalized pruritus, urticaria) are common, and are usually manageable with oral diphenhydramine.
Hypogammaglobulinemia is a type of primary immunodeficiency disease in which not enough gamma globulins exist in the blood (thus "" + "gamma" + "globulin" + ""). This entails that not enough antibodies exist, which impairs the immune system. Hypogammaglobulinemia is a characteristic of common variable immunodeficiency.
causes:
nephrotic syndrome
Estimating the mortality rate based on the available literature is difficult. Several case reports have revealed an association between acquired partial lipodystrophy and other diseases.
Nephropathy, in the form of membranoproliferative glomerulonephritis, occurs in about 20% of patients. Usually, patients do not have clinically evident renal disease or abnormalities in renal function until they have had the disease for 8 or more years. Membranoproliferative glomerulonephritis usually presents with asymptomatic proteinuria or hematuria.
The disease may gradually progress. About 40-50% of patients develop end-stage renal disease over the course of 10 years. This condition is responsible for most recurrent hospital admissions in patients with acquired partial lipodystrophy. Rapid progression of renal disease in a pregnant patient was reported. Recurrent disease in transplanted kidneys is common, although there have been reports of successful transplantations.
Associated autoimmune diseases (e.g., systemic lupus erythematosus, thyroiditis) contribute significantly to increased morbidity in these patients compared with the general population. Although uncommon, insulin resistance increases cardiovascular risk. Susceptibility to bacterial infections probably results from a C3 deficiency (due to complement activation and consumption of C3). Low C3 levels may impair complement-mediated phagocytosis and bacterial killing.
Around 250 cases have been reported since the recognition of this syndrome. It is a rare syndrome with no known prevalence, although it is more common than the generalized form of acquired lipodystrophy (Lawrence syndrome).
- Race: No clear relationship exists between incidence and race in this syndrome; however, most reported patients have been of European descent.
- Age: The median age of onset of lipodystrophy has been reported to be around seven years; however, onset occurring as late as the fourth or fifth decade of life also has been reported. The median age at presentation has been about 25 years, and women have been found to present later than men (age 28 for women, age 18 for men).
- Sex: Analysis of the pooled data revealed female patients were affected about four times more often than males.
Acquired C1 esterase inhibitor deficiency also known as "Acquired Angioedema" presents with symptoms indistinguishable from hereditary angioedema, but generally with onset after the fourth decade of life.
C4 levels are low and C3 levels are normal.
Factor XII deficiency (also Hageman factor deficiency) is a deficiency in the production of factor XII (FXII), a plasma glycoprotein and clotting factor that participates in the coagulation cascade and activates factor XI. FXII appears to be not essential for blood clotting, as individuals with this condition are usually asymptomatic and form blood clots in vivo. FXII deficiency tends to be identified during presurgical laboratory screening for bleeding disorders.
The condition can be inherited or acquired.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
Linear IgA bullous dermatosis is frequently associated with medication exposure, especially vancomycin, with men and women being equally affected. It was first described by Tadeusz Chorzelski in 1979. Linear IgA dermatosis is a rare immune-mediated blistering skin disease that may be divided into two types:
- "Adult linear IgA disease" is an acquired, autoimmune blistering disease that may present with a clinical pattern of vesicles indistinguishable from dermatitis herpetiformis, or with vesicles and bullae in a bullous pemphigoid-like appearance. This disease can often be difficult to treat even with usually effective medications such as rituximab.
- "Childhood linear IgA disease" (also known as "Chronic bullous disease of childhood") is an acquired, self-limited bullous disease that may begin by the time the patient is age 2 to 3 and usually remits by age 13.
Inherited or congenital FVII deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with the congenital FVII deficiency the condition is lifelong. People with this condition should alert other family members may they also have the condition or carry the gene. In the general population the condition affects about 1 in 300,000 to 500,000 people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired of FVII deficiency an insufficient amount of factor VII is produced by the liver due to liver disease, vitamin K deficiency, or certain medications (i.e. Coumadin).
Acquired perforating dermatosis (also known as "Acquired perforating collagenosis") is clinically and histopathologically similar to perforating folliculitis, also associated with chronic kidney failure, with or without hemodialysis or peritoneal dialysis, and/or diabetes mellitus, but not identical to Kyrle disease.
Drug induced hemolysis has large clinical relevance. It occurs when drugs actively provoke red blood cell destruction. It can be divided in the following manner:
- Drug-induced autoimmune hemolytic anemia
- Drug-induced nonautoimmune hemolytic anemia
A total of four mechanisms are usually described, but there is some evidence that these mechanisms may overlap.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
Platelet storage pool deficiency has no treatment however management consists of antifibrinolytic medications if the individual has unusual bleeding event, additionally caution should be taken with usage of NSAIDS
A review from 2000 stated that life expectancy was reduced because of a tendency to develop cancer relatively early as well as deaths due to infections related to immunodeficiency.