Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The condition of platelet storage pool deficiency can be acquired or inherited(genetically passed on from the individuals parents).Some of the causes of platelet storage pool deficiency when acquired are:
Thalassemia can coexist with other hemoglobinopathies. The most common of these are:
- Hemoglobin E/thalassemia: common in Cambodia, Thailand, and parts of India, it is clinically similar to β thalassemia major or thalassemia intermedia.
- Hemoglobin S/thalassemia: common in African and Mediterranean populations, is clinically similar to sickle-cell anemia, with the additional feature of splenomegaly.
- Hemoglobin C/thalassemia: common in Mediterranean and African populations, hemoglobin C/β thalassemia causes a moderately severe hemolytic anemia with splenomegaly; hemoglobin C/β thalassemia produces a milder disease.
- Hemoglobin D/thalassemia: common in the northwestern parts of India and Pakistan (Punjab region).
Inherited or congenital FX deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene usually do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with congenital FX deficiency the condition is lifelong. People affected should alert other family members as they may also have the condition or carry the gene. In the general population the condition affects about 1 in 1 million people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired form of FX deficiency an insufficient amount of factor X is produced by the liver due to liver disease, vitamin K deficiency, buildup of abnormal proteins in organs (amyloidosis) or certain medications (i.e. warfarin). In amyloidosis FX deficiency develops as FX and other coagulation factors are absorbed by amyloid fibrils.
In terms of epidemiology, worldwide distribution of inherited alpha-thalassemia corresponds to areas of malaria exposure, suggesting a protective role. Thus, alpha-thalassemia is common in sub-Saharan Africa, the Mediterranean Basin, and generally tropical (and subtropical) regions. The epidemiology of alpha-thalassemia in the US reflects this global distribution pattern. More specifically, HbH disease is seen in Southeast Asia and the Middle East, while Hb Bart hydrops fetalis is acknowledged in Southeast Asia only.
The data indicate that 15% of the Greek and Turkish Cypriots are carriers of beta-thalassaemia genes, while 10% of the population carry alpha-thalassaemia genes.
Inherited or congenital FX deficiency is usually passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene are asymptomatic, but may have lower FXII levels and can pass the gene on to half their offspring.
In persons with congenital FXII deficiency the condition is lifelong. People affected may want to alert other family members as they may also may carry the gene. A 1994 study of 300 healthy blood donors found that 7 persons (2.3%) had FXII deficiencies with one subject having no detectable FXII (0.3%). This study is at variance with estimates that only 1 in 1,000,000 people has the condition.
The acquired form of FXII deficiency is seen in patients with the nephrotic syndrome, liver disease, sepsis and shock, disseminated intravascular coagulation, and other diseases.
The American College of Obstetricians and Gynecologists recommends all people thinking of becoming pregnant be tested to see if they have thalassemia. Genetic counseling and genetic testing are recommended for families who carry a thalassemia trait.
A screening policy exists in Cyprus to reduce the rate of thalassemia, which, since the program's implementation in the 1970s (which also includes prenatal screening and abortion), has reduced the number of children born with the disease from one of every 158 births to almost zero.
In Iran as a premarital screening, the man's red cell indices are checked first, if he has microcytosis (mean cell hemoglobin < 27 pg or mean red cell volume < 80 fl), the woman is tested. When both are microcytic, their hemoglobin A2 concentrations are measured. If both have a concentration above 3.5% (diagnostic of thalassemia trait) they are referred to the local designated health post for genetic counseling.
Large scale awareness campaigns are being organized in India both by government and non-government organizations in favor of voluntary premarital screening to detect carriers of thalassemia and marriage between both carriers are strongly discouraged.
Platelet storage pool deficiency is a type of coagulopathy characterized by defects in the granules in platelets, particularly a lack of granular non-metabolic ADP. Individuals with ADP deficient "storage pool disease" present a prolonged bleeding time due to impaired aggregation response to fibrillar collagen.
Alpha-thalassemias are most commonly inherited in a Mendelian recessive manner. They are also associated with deletions of chromosome 16p. Alpha thalassemia can also be acquired under rare circumstances.
Inherited or congenital FVII deficiency is passed on by autosomal recessive inheritance. A person needs to inherit a defective gene from both parents. People who have only one defective gene do not exhibit the disease, but can pass the gene on to half their offspring. Different genetic mutations have been described.
In persons with the congenital FVII deficiency the condition is lifelong. People with this condition should alert other family members may they also have the condition or carry the gene. In the general population the condition affects about 1 in 300,000 to 500,000 people. However, the prevalence may be higher as not all individuals may express the disease and be diagnosed.
In the acquired of FVII deficiency an insufficient amount of factor VII is produced by the liver due to liver disease, vitamin K deficiency, or certain medications (i.e. Coumadin).
While it is indicated that people with FXII deficiency are generally asymptomatic, studies in women with recurrent miscarriages suggest an association with FXII deficiency.
The condition is of importance in the differential diagnosis to other bleeding disorders, specifically the hemophilias: hemophilia A with a deficiency in factor VIII or antihemophilic globulin, hemophilia B with a deficiency in factor IX (Christmas disease), and hemophilia C with a deficiency in factor XI. Other rare forms of bleeding disorders are also in the differential diagnosis.
There is concern that individuals with FXII deficiency are more prone to thrombophilic disease, however, this is at variance with a long term study from Switzerland.
The vWF gene is located on the short arm "p" of chromosome 12 (12p13.2). It has 52 exons spanning 178kbp. Types 1 and 2 are inherited as autosomal dominant traits and type 3 is inherited as autosomal recessive. Occasionally, type 2 also inherits recessively. vWD occurs in approximately 1% of the population and affects men and women equally.
Certain mutations in the fibrinogen Aα-chain gene cause a form of familial renal amyloidosis termed hereditary fibrinogen Aα-Chain amyloidosis. The disorder is due to autosomal dominant inheritance of Aα chain mutations the most common of which is hemoglobin Indianopolis, a heterzyogus missense (c.1718G>T: Arg554Leu) mutation. Other missense mutations causing this disorder are unnamed; they include 1634A>T: Glu526Val; c.1670C>A: Thr538lys; c.1676A.T:Glu540Val; and c1712C>A:Pro552Hi. A deletion mutation causing a frameshift viz., c.1622delT: Thr525Leufs, is also a cause of the disorder. The fibrinogen bearing these mutant Aα-chains is secreted into the circulation and gradually accumulates in, and causes significant injury to, the kidney. The mutant fibrinogen does not appear to accumulate in, or injure, extra-renal tissues.
Around 250 cases have been reported since the recognition of this syndrome. It is a rare syndrome with no known prevalence, although it is more common than the generalized form of acquired lipodystrophy (Lawrence syndrome).
- Race: No clear relationship exists between incidence and race in this syndrome; however, most reported patients have been of European descent.
- Age: The median age of onset of lipodystrophy has been reported to be around seven years; however, onset occurring as late as the fourth or fifth decade of life also has been reported. The median age at presentation has been about 25 years, and women have been found to present later than men (age 28 for women, age 18 for men).
- Sex: Analysis of the pooled data revealed female patients were affected about four times more often than males.
Von Willebrand factor is mainly active in conditions of high blood flow and shear stress. Deficiency of vWF, therefore, shows primarily in organs with extensive small vessels, such as skin, gastrointestinal tract, and uterus. In angiodysplasia, a form of telangiectasia of the colon, shear stress is much higher than in average capillaries, and the risk of bleeding is increased concomitantly.
vWF carries Factor VIII
In more severe cases of type 1 vWD, genetic changes are common within the vWF gene and are highly penetrant. In milder cases of type 1 vWD, a complex spectrum of molecular pathology may exist in addition to polymorphisms of the vWF gene alone. The individual's ABO blood group can influence presentation and pathology of vWD. Those individuals with blood group O have a lower mean level than individuals with other blood groups. Unless ABO group–specific vWF:antigen reference ranges are used, normal group O individuals can be diagnosed as type I vWD, and some individuals of blood group AB with a genetic defect of vWF may have the diagnosis overlooked because vWF levels are elevated due to blood group.
There are several treatments available for factor VII deficiency; they all replace deficient FVII.
1. Recombinant FVIIa concentrate (rFVIIa) is a recombinant treatment that is highly effective and has no risk of fluid overload or viral disease. It may be the optimal therapy.
2. Plasma derived Factor VII concentrate (pdFVII) : This treatment is suitable for surgery but can lead to thrombosis. It is virus attenuated.
3. Prothrombin complex concentrate (PCC) containing factor VII: this treatment is suitable for surgery, but has a risk of thrombosis. It is virus attenuated.
4. Fresh frozen plasma (FFP): This is relatively inexpensive and readily available. While effective this treatment carries a risk of blood-borne viruses and fluid overload.
Factor X deficiency (X as Roman numeral ten) is a bleeding disorder characterized by a lack in the production of factor X (FX), an enzyme protein that causes blood to clot in the coagulation cascade. Produced in the liver FX when activated cleaves prothrombin to generate thrombin in the intrinsic pathway of coagulation. This process is vitamin K dependent and enhanced by activated factor V.
The condition may be inherited or, more commonly, acquired.
Individuals experiencing episodic bleeding as a result of congenital dysfibrinogenemia should be treated at a center specialized in treating hemophilia. They should avoid all medications that interfere with normal platelet function. During bleeding episodes, treatment with fibrinogen concentrates or in emergencies or when these concentrates are unavailable, infusions of fresh frozen plasma and/or cryoprecipitate (a fibrinogen-rich plasma fraction) to maintain fibrinogen activity levels >1 gram/liter. Tranexamic acid or fibrinogen concentrates are recommended for prophylactic treatment prior to minor surgery while fibrinogen concentrates are recommended prior to major surgery with fibrinogen concentrates usage seeking to maintain fibrinogen activity levels at >1 gram/liter. Women undergoing vaginal or Cesarean child birth should be treated at a hemophilia center with fibrinogen concentrates to maintain fibrinogen activity levels at 1.5 gram/liter. The latter individuals require careful observation for bleeding during their post-partum periods.
Individuals experiencing episodic thrombosis as a result of congenital dysfibrinogenemia should also be treated at a center specialized in treating hemophilia using antithrombotic agents. They should be instructed on antithrombotic behavioral methods fur use in high risk situations such as long car rides and air flights. Venous thrombosis should be treated with low molecular weight heparin for a period that depends on personal and family history of thrombosis events. Prophylactic treatment prior to minor surgery should avoid fibrinogen supplementation and use prophylactic anticoagulation measures; prior to major surgery, fibrinogen supplementation should be used only if serious bleeding occurs; otherwise, prophylactic anticoagulation measures are recommended.
Estimating the mortality rate based on the available literature is difficult. Several case reports have revealed an association between acquired partial lipodystrophy and other diseases.
Nephropathy, in the form of membranoproliferative glomerulonephritis, occurs in about 20% of patients. Usually, patients do not have clinically evident renal disease or abnormalities in renal function until they have had the disease for 8 or more years. Membranoproliferative glomerulonephritis usually presents with asymptomatic proteinuria or hematuria.
The disease may gradually progress. About 40-50% of patients develop end-stage renal disease over the course of 10 years. This condition is responsible for most recurrent hospital admissions in patients with acquired partial lipodystrophy. Rapid progression of renal disease in a pregnant patient was reported. Recurrent disease in transplanted kidneys is common, although there have been reports of successful transplantations.
Associated autoimmune diseases (e.g., systemic lupus erythematosus, thyroiditis) contribute significantly to increased morbidity in these patients compared with the general population. Although uncommon, insulin resistance increases cardiovascular risk. Susceptibility to bacterial infections probably results from a C3 deficiency (due to complement activation and consumption of C3). Low C3 levels may impair complement-mediated phagocytosis and bacterial killing.
It is possible to acquire this disease later in life.
Causes include ingesting expired tetracyclines (where tetracycline changes to form epitetracycline and anhydrotetracycline which damage proximal tubule), and as a side effect of tenofovir in cases of pre-existing renal impairment. In the HIV population, Fanconi syndrome can develop secondary to the use of an antiretroviral regimen containing tenofovir and didanosine.
Lead poisoning also leads to Fanconi syndrome.
Multiple myeloma or monoclonal gammopathy of undetermined significance can also cause the condition.
Additionally, Fanconi Syndrome can develop as a secondary or tertiary effect of certain autoimmune disorders.
Overall, according to a study in British Columbia, approximately 2.3 children per 100,000 births (1 in 43,000) have some form of glycogen storage disease. In the United States, they are estimated to occur in 1 per 20,000–25,000 births. Dutch incidence rate is estimated to be 1 per 40,000 births.
Cystinosis is the most common cause of Fanconi syndrome in children.
Other recognised causes are Wilson's disease (a genetically inherited condition of copper metabolism), Lowe syndrome, tyrosinemia (type I), galactosemia, glycogen storage diseases, and hereditary fructose intolerance.
Two forms, Dent's disease and Lowe syndrome, are X linked.
A recently described form of this disease is due to a mutation in the peroxisomal protein EHHADH. This mutation misdirects the EHHADH to the mitochondria. This interfers with respiratory complex I and with beta oxidation of fatty acids. The end result is a decrease in the ability of the mitochondria to produce ATP.
The cause of complement deficiency is genetics (though cases of an acquired nature do exist post infection). The majority of complement deficiencies are autosomal recessive, while properdin deficiency could be X-linked inheritance, and finally MBL deficiency can be both.
Hypoprothrombinemia can be the result of a genetic defect, may be acquired as the result of another disease process, or may be an adverse effect of medication. For example, 5-10% of patients with systemic lupus erythematosus exhibit acquired hypoprothrombinemia due to the presence of autoantibodies which bind to prothrombin and remove it from the bloodstream (lupus anticoagulant-hypoprothrombinemia syndrome). The most common viral pathogen that is involved is Adenovirus, with a prevalence of 50% in postviral cases.
Inheritance:
Autosomal recessive condition in which both parents must carry the recessive gene in order to pass the disease on to offspring. If both parents have the autosomal recessive condition, the chance of mutation in offspring increases to 100%. An individual will be considered a carrier if one mutant copy of the gene is inherited, and will not illustrate any symptoms. The disease affects both men and women equally, and overall, is a very uncommon inherited or acquired disorder.
Non-inheritance and other factors:
There are two types of prothrombin deficiencies that occur depending on the mutation:
Type I (true deficiency), includes a missense or nonsense mutation, essentially decreasing prothrombin production. This is associated with bleeding from birth. Here, plasma levels of prothrombin are typically less than 10% of normal levels.
Type II, known as dysprothrombinemia, includes a missense mutation at specific Xa factor cleavage sites and serine protease prothrombin regions. Type II deficiency creates a dysfunctional protein with decreased activity and usually normal or low-normal antigen levels. A vitamin K-dependent clotting factor is seldom seen as a contributor to inherited prothrombin deficiencies, but lack of Vitamin K decreases the synthesis of prothrombin in liver cells.
Acquired underlying causes of this condition include severe liver disease, warfarin overdose, platelet disorders, and disseminated intravascular coagulation (DIC).
It may also be a rare adverse effect to Rocephin.
Bone marrow failure in both children and adults can be either inherited or acquired. Inherited bone marrow failure is often the cause in young children, while older children and adults may acquire the disease later in life. A maturation defect in genes is a common cause of inherited bone marrow failure. The most common cause of acquired bone marrow failure is aplastic anemia. Working with chemicals such as benzene could be a factor in causing the illness. Other factors include radiation or chemotherapy treatments, and immune system problems.
Acquired hypocomplementemia may occur in the setting of bone infections (osteomyelitis), infection of the lining of the heart (endocarditis), and cryoglobulinemia. Systemic lupus erythematosus is associated with low C3 and C4 Membranoproliferative glomerulonephritis usually has low C3.