Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Although no cause has been officially confirmed, researchers speculate the disease might result from a genetic mutation that sporadically occurs for unknown reasons.
Because MOMO is such a rare disorder, very few studies have been conducted into its causes. Current research suggests that it is linked to a de novo (new) autosomal dominant mutation.
Approximately 4% of the general population have an elongated styloid process, and of these about 4% give rise to the symptoms of Eagle syndrome. Therefore, the incidence of stylohyoid syndrome may be about 0.16%.
Patients with this syndrome tend to be between 30 and 50 years of age but it has been recorded in teenagers and in patients > 75 years old. It is more common in women, with a male:female ratio ~ 1:2.
MOMO syndrome is an extremely rare genetic disorder which belongs to the overgrowth syndromes and has been diagnosed in only six cases around the world, and occurs in 1 in 100 million births. The name is an acronym of the four primary aspects of the disorder: Macrosomia (excessive birth weight), Obesity, Macrocephaly (excessive head size) and Ocular abnormalities. It is unknown if it is a life-limiting condition. MOMO syndrome was first diagnosed in 1993 by Professor Célia Priszkulnik Koiffmann, a Brazilian researcher in the Genetic and Clinical Studies of neurodevelopmental disorders.
This syndrome's acronym is an intended pun. It refers to the traditionally tall and obese king of Carnivals, Momus—Rei Momo in Portuguese.
Hyper-IgM syndrome type 4 is a form of Hyper IgM syndrome which is a defect in class switch recombination downstream of the AICDA gene that does not impair somatic hypermutation.
McKusick–Kaufman syndrome is a genetic condition associated with MKKS.
The condition is named for Dr. Robert L. Kaufman and Victor McKusick. It is sometimes known by the abbreviation MKS. In infancy it can be difficult to distinguish between MKS and the related Bardet–Biedl syndrome, as the more severe symptoms of the latter condition rarely materialise before adulthood.
It has several different types:
- type 1 - Apert syndrome
- type 2 - Crouzon syndrome
- type 3 - Saethre-Chotzen syndrome
- type 5 - Pfeiffer syndrome
A related term, "acrocephalopolysyndactyly" (ACPS), refers to the inclusion of polydactyly to the presentation. It also has multiple types:
- type 1 - Noack syndrome; now classified with Pfeiffer syndrome
- type 2 - Carpenter syndrome
- type 3 - Sakati-Nyhan-Tisdale syndrome
- type 4 - Goodman syndrome; now classified with Carpenter syndrome
- type 5 - Pfeiffer syndrome
It has been suggested that the distinction between "acrocephalosyndactyly" versus "acrocephalopolysyndactyly" should be abandoned.
Clinically, McKusick–Kaufman syndrome is characterized by a combination of three features: postaxial polydactyly, heart defects, and genital abnormalities:
- Vaginal atresia with hydrometrocolpos
- Double vagina and/or uterus.
- Hypospadias, chordee (a downward-curving penis), and undescended testes (cryptorchidism).
- ureter stenosis or ureteric atresia
There are approximately three hundred known cases of Carpenter Syndrome in the United States. Only 1 in 1 million live births will result in an infant affected by Carpenter Syndrome (RN, 2007).
Carpenter Syndrome is an autosomal recessive disease which means both parents must have the faulty genes in order to pass the disease onto their children. Even if both parents possess the faulty gene there is still only a twenty five percent chance that they will produce a child affected by the syndrome. Their children who do not have the disease will still be carriers and possess the ability to pass the disease onto their offspring if their spouse is also a carrier of the particular gene.
Wolf–Hirschhorn syndrome is a microdeletion syndrome caused by a deletion within HSA band 4p16.3 of the short arm of chromosome 4, particularly in the region of and . About 87% of cases represent a "de novo" deletion, while about 13% are inherited from a parent with a chromosome translocation. In the cases of familial translocation, there is a 2 to 1 excess of maternal transmission. Of the "de novo" cases, 80% are paternally derived. Severity of symptoms and expressed phenotype differ based on the amount of genetic material deleted. The critical region for determining the phenotype is at 4p16.3 and can often be detected through genetic testing and fluorescence in situ hybridization (FISH). Genetic testing and genetic counseling is offered to affected families.
Sakati–Nyhan–Tisdale syndrome, also called acrocephalopolysyndactyly type III, is a rare genetic disorder that has been associated with abnormalities in the bones of the legs, congenital heart defects and craniofacial defects. The syndrome belongs to a group of rare genetic disorders known as acrocephalopolysyndactyly or ACPS, for short.
PEPD is an extremely rare disorder with only 15 known affected families. There are some cases, however, of individuals originally diagnosed with epilepsy who are later determined to have PEPD. This suggests that rates of PEPD may be higher than currently believed.
Acrocephalosyndactylia (or acrocephalosyndactyly) is the common presentation of craniosynostosis and syndactyly.
The most common characteristics include a distinct craniofacial phenotype (microcephaly, micrognathia, short philtrum, prominent glabella, ocular hypertelorism, dysplastic ears and periauricular tags), growth restriction, intellectual disability, muscle hypotonia, seizures, and congenital heart defects. Less common characteristics include hypospadias, colobomata of the iris, renal anomalies, and deafness. Antibody deficiencies are also common, including common variable immunodeficiency and IgA deficiency. T-cell immunity is normal.
Congenital malformations of the dermatoglyphs are a cutaneous condition divided into four main categories based on the appearance of the dermal ridges of which they are composed: (1) ridge aplasia; (2) ridge hypoplasia; (3) ridge dissociation; and (4) ridges-off-the-end.
Screening for melanoma in FAMMM kindreds should begin at age 10 with a baseline total body skin examination including scalp, eyes, oral mucosa, genital area, and nail, as family members may develop melanoma in their early teens.
At Mayo Clinic, FAMMM patients with a confirmed mutation and family history of pancreatic cancer are offered screening with either high-resolution pancreatic protocol CT, MRI, or endoscopic ultrasound starting at age 50 or 10 years younger than the earliest family member with pancreas cancer. They are counseled on the lack of evidence-based data to support screening, and on the limitations of our current technology to detect a lesion at a stage amenable to therapy.
Complement 4 deficiency is a genetic condition affecting complement component 4.
It can present with lupus-like symptoms.
Carpenter syndrome has been associated with mutations in the RAB23 gene, which is located on chromosome 6 in humans. Additionally, three key SNPs in the MEGF8 gene, located on chromosome 19 at 19q13.2, have been identified as primary causes of Carpenter syndrome.
In 1820 Norris reported the first case of what is now recognized as FAMMM (12). He described a 59-year-old man with melanoma, a high total body mole count, and family history of the same.
Reticulate acropigmentation of Kitamura consists of linear palmar pits and pigmented macules 1 to 4 mm in diameter on the volar and dorsal aspects of the hands and feet, usually inherited in an autosomal-dominant fashion.
In 1963, a doctor studied two female infants who showed symptoms of mental retardation, congenital cataracts, epileptic fits and small stature. The two girls died at the age of 4 and 8 months. The autopsy revealed renal tubular necrosis and encephalopathy.
Carbamazepine is at least partly effective at reducing the number or severity of attacks in the majority of PEPD patients. High doses of this drug may be required, perhaps explaining the lack of effect in some individuals. While other anti-epileptic drugs, gabapentin and topiramate, have limited effect in some patients, they have not been shown to be generally effective. Opiate derived analgesics are also largely ineffective, with only sporadic cases of beneficial effect.
Genetic
- Inborn errors of metabolism
1. Congenital disorder of glycosylation
2. Mitochondrial disorders
3. Peroxisomal disorder
4. Glucose transporter defect
5. Menkes disease
6. Congenital disorders of amino acid metabolism
7. Organic acidemia
Syndromes
- Contiguous gene deletion
1. 17p13.3 deletion (Miller–Dieker syndrome)
- Single gene defects
1. Rett syndrome (primarily girls)
2. Nijmegen breakage syndrome
3. X-linked lissencephaly with abnormal genitalia
4. Aicardi–Goutières syndrome
5. Ataxia telangiectasia
6. Cohen syndrome
7. Cockayne syndrome
Acquired
- Disruptive injuries
1. Traumatic brain injury
2. Hypoxic-ischemic encephalopathy
3. Ischemic stroke
4. Hemorrhagic stroke
- Infections
1. Congenital HIV encephalopathy
2. Meningitis
3. Encephalitis
- Toxins
1. Lead poisoning
2. Chronic renal failure
- Deprivation
1. Hypothyroidism
2. Anemia
3. Congenital heart disease
4. Malnutrition
Genetic factors may play a role in causing some cases of microcephaly. Relationships have been found between autism, duplications of chromosomes, and macrocephaly on one side. On the other side, a relationship has been found between schizophrenia, deletions of chromosomes, and microcephaly. Moreover, an association has been established between common genetic variants within known microcephaly genes ("MCPH1, CDK5RAP2") and normal variation in brain structure as measured with magnetic resonance imaging (MRI)i.e., primarily brain cortical surface area and total brain volume.
The spread of Aedes mosquito-borne Zika virus has been implicated in increasing levels of congenital microcephaly by the International Society for Infectious Diseases and the US Centers for Disease Control and Prevention. Zika can spread from a pregnant woman to her fetus. This can result in other severe brain malformations and birth defects. A study published in The New England Journal of Medicine has documented a case in which they found evidence of the Zika virus in the brain of a fetus that displayed the morphology of microcephaly.
Crome syndrome is a rare disease defined by various symptoms, including epilepsy, intellectual disability, eye and kidney problems. It usually causes death in 4 to 8 months.
Isolated
1. Familial (autosomal recessive) microcephaly
2. Autosomal dominant microcephaly
3. X-linked microcephaly
4. Chromosomal (balanced rearrangements and ring chromosome)
Syndromes
- Chromosomal
1. Poland syndrome
2. Down syndrome
3. Edward syndrome
4. Patau syndrome
5. Unbalanced rearrangements
- Contiguous gene deletion
1. 4p deletion (Wolf–Hirschhorn syndrome)
2. 5p deletion (Cri-du-chat)
3. 7q11.23 deletion (Williams syndrome)
4. 22q11 deletion (DiGeorge syndrome)
- Single gene defects
1. Smith–Lemli–Opitz syndrome
2. Seckel syndrome
3. Cornelia de Lange syndrome
4. Holoprosencephaly
5. Primary microcephaly 4
6. Wiedemann-Steiner syndrome
Acquired
- Disruptive injuries
1. Ischemic stroke
2. Hemorrhagic stroke
3. Death of a monozygotic twin
- Vertically transmitted infections
1. Congenital cytomegalovirus infection
2. Toxoplasmosis
3. Congenital rubella syndrome
4. Zika virus
- Drugs
1. Fetal hydantoin syndrome
2. Fetal alcohol syndrome
Other
1. Radiation exposure to mother
2. Maternal malnutrition
3. Maternal phenylketonuria
4. Poorly controlled gestational diabetes
5. Hyperthermia
6. Maternal hypothyroidism
7. Placental insufficiency