Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Incontinentia pigmenti (IP) is a rare genetic disorder that affects the skin, hair, teeth, nails, and central nervous system. It is named from its appearance under a microscope. It is also known as Bloch–Siemens syndrome, Bloch–Sulzberger disease, Bloch–Sulzberger syndrome, melanoblastosis cutis, and nevus pigmentosus systematicus.
It is characterized by skin abnormalities that begin in childhood, usually a blistering rash which heals, followed by the development of harder skin growths. The skin may develop grey or brown patches which fade with time. Other symptoms can include hair loss, dental abnormalities, eye abnormalities that can lead to vision loss, and lined or pitted fingernails and toenails. Associated problems can include delayed development, intellectual disability, seizures, and other neurological problems. There is no specific treatment, individual conditions must be managed by specialists.
IP is inherited in an X-linked dominant manner. IP is lethal in most, but not all, males. A female with IP may have inherited the IKBKG mutation from either parent or have a new gene mutation. Parents may either be clinically affected or have germline mosaicism. Affected women have a 50% risk of transmitting the mutant IKBKG allele at conception; however, most affected male conceptuses miscarry. Thus, the effective ratio for liveborn children from a mother carrying the mutation is 33% unaffected females, 33% affected females, and 33% unaffected males. Genetic counseling, prenatal testing, and preimplantation genetic diagnosis is available.
In females, the cells expressing the mutated IKBKG gene due to lyonization selectively die around the time of birth so the X-inactivation is extremely skewed.
IP is caused by mutations in a gene called NEMO (NF-κB essential modulator).