Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Based on the results of worldwide screening of biotinidase deficiency in 1991, the incidence of the disorder is:
5 in 137,401 for profound biotinidase deficiency
- One in 109,921 for partial biotinidase deficiency
- One in 61,067 for the combined incidence of profound and partial biotinidase deficiency
- Carrier frequency in the general population is approximately one in 120.
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
Since biotin is in many foods at low concentrations, deficiency is rare except in locations where malnourishment is very common. Pregnancy, however, alters biotin catabolism and despite a regular biotin intake, half of the pregnant women in the U.S. are marginally biotin deficient.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
Raw eggs should be avoided in those with biotin deficiency, because egg whites contain high levels of the anti-nutrient avidin. The name avidin literally means that this protein has an "avidity" (Latin: "to eagerly long for") for biotin. Avidin binds irreversibly to biotin and this compound is then excreted in the urine.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
A 2011 review of 176 cases found that diagnoses made early in life (within a few days of birth) were associated with more severe disease and a mortality of 33%. Children diagnosed later, and who had milder symptoms, showed a lower mortality rate of ~3%.
In the United States, biotin supplements are readily available without a prescription in amounts ranging from 1,000 to 10,000 micrograms (30 micrograms is identified as Adequate Intake).
Vegetarian diets and, for younger children, breastfeeding are common ways to limit protein intake without endangering tryptophan transport to the brain.
The addition of SPCD to newborn screening panels has offered insight into the incidence of the disorder around the world. In Taiwan, the incidence of SPCD in newborns was estimated to be approximately 1:67,000, while maternal cases were identified at a higher frequency of approximately 1:33,000. The increased incidence of SPCD in mothers compared to newborns is not completely understood. Estimates of SPCD in Japan have shown a similar incidence of 1:40,000. Worldwide, SPCD has the highest incidence in the relatively genetically isolated Faroe Islands, where an extensive screening program was instituted after the sudden death of two teenagers. The incidence in the Faroe Islands is approximately 1:200.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
The term fatty acid oxidation disorder (FAOD) is sometimes used, especially when there is an emphasis on the oxidation of the fatty acid.
In addition to the fetal complications, they can also cause complications for the mother during pregnancy.
Examples include:
- trifunctional protein deficiency
- MCADD, LCHADD, and VLCADD
Babies with this disorder are usually healthy at birth. The signs and symptoms may not appear until later in infancy or childhood and can include poor feeding and growth (failure to thrive), a weakened and enlarged heart (dilated cardiomyopathy), seizures, and low numbers of red blood cells (anemia). Another feature of this disorder may be very low blood levels of carnitine (a natural substance that helps convert certain foods into energy).
Isobutyryl-CoA dehydrogenase deficiency may be worsened by long periods without food (fasting) or infections that increase the body's demand for energy. Some individuals with gene mutations that can cause isobutyryl-CoA dehydrogenase deficiency may never experience any signs and symptoms of the disorder.
This condition is sometimes mistaken for fatty acid and ketogenesis disorders such as Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD), other long-chain fatty acid oxidation disorders such as Carnitine palmitoyltransferase II deficiency (CPT-II) and Reye syndrome.
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
Isobutyryl-coenzyme A dehydrogenase deficiency, commonly known as IBD deficiency, is a rare metabolic disorder in which the body is unable to process certain amino acids properly.
People with this disorder have inadequate levels of an enzyme that helps break down the amino acid valine, resulting in a buildup of valine in the urine, a symptom called valinuria.
Carnitine palmitoyltransferase I deficiency is a rare metabolic disorder that prevents the body from converting certain fats called long-chain fatty acids into energy, particularly during periods without food.
Carnitine, a natural substance acquired mostly through the diet, is used by cells to process fats and produce energy. People with this disorder have a faulty enzyme, carnitine palmitoyltransferase I, that prevents these long-chain fatty acids from being transported into the mitochondria to be broken down.
Standard of care for treatment of CPT II deficiency commonly involves limitations on prolonged strenuous activity and the following dietary stipulations:
- The medium-chain fatty acid triheptanoin appears to be an effective therapy for adult-onset CPT II deficiency.
- Restriction of lipid intake
- Avoidance of fasting situations
- Dietary modifications including replacement of long-chain with medium-chain triglycerides supplemented with L-carnitine
Isovaleric acidemia is estimated to affect at least 1 in 250,000 births in the United States.
2,4 Dienoyl-CoA reductase deficiency is an inborn error of metabolism resulting in defective fatty acid oxidation caused by a deficiency of the enzyme 2,4 Dienoyl-CoA reductase. Lysine degradation is also affected in this disorder leading to hyperlysinemia. The disorder is inherited in an autosomal recessive manner, meaning an individual must inherit mutations in "NADK2," located at 5p13.2 from both of their parents. NADK2 encodes the mitochondrial NAD kinase. A defect in this enzyme leads to deficient mitochondrial nicotinamide adenine dinucleotide phosphate levels. 2,4 Dienoyl-CoA reductase, but also lysine degradation are performed by NADP-dependent oxidoreductases explaining how NADK2 deficiency can lead to multiple enzyme defects.
2,4-Dienoyl-CoA reductase deficiency was initially described in 1990 based on a single case of a black female who presented with persistent hypotonia. Laboratory investigations revealed elevated lysine, low levels of carnitine and an abnormal acylcarnitine profile in urine and blood. The abnormal acylcarnitine species was eventually identified as 2-trans,4-cis-decadienoylcarnitine, an intermediate of linoleic acid metabolism. The index case died of respiratory failure at four months of age. Postmortem enzyme analysis on liver and muscle samples revealed decreased 2,4-dienoyl-CoA reductase activity when compared to normal controls. A second case with failure to thrive, developmental delay, lactic acidosis and severe encephalopathy was reported in 2014.
2,4-Dienoyl-CoA reductase deficiency was included as a secondary condition in the American College of Medical Genetics Recommended Uniform Panel for newborn screening. Its status as a secondary condition means there was not enough evidence of benefit to include it as a primary target, but it may be detected during the screening process or as part of a differential diagnosis when detecting conditions included as primary target. Despite its inclusion in newborn screening programs in several states for a number of years, no cases have been identified via neonatal screening.
Incomplete list of various fatty-acid metabolism disorders.
- Carnitine Transport Defect
- Carnitine-Acylcarnitine Translocase (CACT) Deficiency
- Carnitine Palmitoyl Transferase I & II (CPT I & II) Deficiency
- 2,4 Dienoyl-CoA Reductase Deficiency
- Electron Transfer Flavoprotein (ETF) Dehydrogenase Deficiency (GAII & MADD)
- 3-Hydroxy-3 Methylglutaryl-CoA Lyase (HMG) Deficiency
- Very long-chain acyl-coenzyme A dehydrogenase deficiency (VLCAD deficiency)
- Long-chain 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (LCHAD deficiency)
- Medium-chain acyl-coenzyme A dehydrogenase deficiency (MCAD deficiency)
- Short-chain acyl-coenzyme A dehydrogenase deficiency (SCAD deficiency)
- 3-hydroxyacyl-coenzyme A dehydrogenase deficiency (M/SCHAD deficiency)
Mutations in the "SLC25A20" gene lead to the production of a defective version of an enzyme called carnitine-acylcarnitine translocase.
Without this enzyme, long-chain fatty acids from food and fats stored in the body cannot be broken down and processed. As a result, these fatty acids are not converted into energy, which can lead to characteristic signs and symptoms of this disorder, such as weakness, hypoglycemia, and an irregular heartbeat. Free long-chain fatty acids or those that are joined with carnitine can affect the electrical properties of cardiac cells causing an irregular heart beat (arrhythmia, which can lead to cardiac arrest). Fatty acids may also build up in tissues and can damage the heart, liver, and muscles, and cause more serious complications.
This condition has an autosomal recessive inheritance pattern, which means the defective gene is located on an autosome, and two copies of the gene - one from each parent - must be inherited to be affected by the disorder. The parents of a child with an autosomal recessive disorder are carriers of one copy of the defective gene, but are usually not affected by the disorder.
MCADD presents in early childhood with hypoketotic hypoglycemia and liver dysfunction, often preceded by extended periods of fasting or an infection with vomiting. Infants who are exclusively breast-fed may present in this manner shortly after birth, due to poor feeding. In some individuals the first manifestation of MCADD may be sudden death following a minor illness. A number of individuals with MCADD may remain completely asymptomatic, provided they never encounter a situation that sufficiently stresses their metabolism. With the advent of expanded newborn screening, some mothers have been identified with MCADD after their infants had positive newborn screens for low carnitine levels.
The enzyme "MCAD" is responsible for the dehydrogenation step of fatty acids with chain lengths between 6 and 12 carbons as they undergo beta-oxidation in the mitochondria. Fatty acid beta-oxidation provides energy after the body has used up its stores of glucose and glycogen. This oxidation typically occurs during periods of extended fasting or illness when caloric intake is reduced, and energy needs are increased.
Systemic primary carnitine deficiency (SPCD), also known as carnitine uptake defect, carnitine transporter deficiency (CTD) or systemic carnitine deficiency is an inborn error of fatty acid transport caused by a defect in the transporter responsible for moving carnitine across the plasma membrane. Carnitine is an important amino acid for fatty acid metabolism. When carnitine cannot be transported into tissues, fatty acid oxidation is impaired, leading to a variety of symptoms such as chronic muscle weakness, cardiomyopathy, hypoglycemia and liver dysfunction. The specific transporter involved with SPCD is OCTN2, coded for by the "SLC22A5" gene located on chromosome 5. SPCD is inherited in an autosomal recessive manner, with mutated alleles coming from both parents.
Acute episodes due to SPCD are often preceded by metabolic stress such as extended fasting, infections or vomiting. Cardiomyopathy can develop in the absence of an acute episode, and can result in death. SPCD leads to increased carnitine excretion in the urine and low levels in plasma. In most locations with expanded newborn screening, SPCD can be identified and treated shortly after birth. Treatment with high doses of carnitine supplementation is effective, but needs to be rigorously maintained for life.
SPCD is more common in the Faroe Islands than in other countries, at least one out of every 1000 inhabitants of the Faroes has the illness, while the numbers for other countries are one in every 100,000. Around 100 persons in the islands have been diagnosed, around one third of the whole population of 48,000 people have been screened for SPCD. Several young Faroese people and children have died a sudden death with cardiac arrest because of SPCD. Scientists believe that around 10% of the Faroese population are carriers of the gene for SPCD. These people are not ill, but may have a lower amount of carnitine in their blood than non-carriers.