Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A determination of the prevalence of anisometropia has several difficulties. First of all, the measurement of refractive error may vary from one measurement to the next. Secondly, different criteria have been employed to define anisometropia, and the boundary between anisometropia and isometropia depend on their definition.
Several studies have found that anisometropia occurs more frequently and tends to be more severe for persons with high ametropia, and that this is particularly true for myopes. Anisometropia follows a U-shape distribution according to age: it is frequent in infants aged only a few weeks, is more rare in young children, comparatively more frequent in teenagers and young adults, and more prevalent after presbyopia sets in, progressively increasing into old age.
One study estimated that 6% of those between the ages of 6 and 18 have anisometropia.
Notwithstanding research performed on the biomechanical, structural and optical characteristics of anisometropic eyes, the underlying reasons for anisometropia are still poorly understood.
Anisometropic persons who have strabismus are mostly far-sighted, and almost all of these have (or have had) esotropia. However, there are indications that anisometropia influences the long-term outcome of a surgical correction of an inward squint, and vice versa. More specifically, for patients with esotropia who undergo strabismus surgery, anisometropia may be one of the risk factors for developing consecutive exotropia and poor binocular function may be a risk factor for anisometropia to develop or increase.
Strabismus can be seen in Down syndrome, Loeys-Dietz syndrome, cerebral palsy, and Edwards syndrome. The risk is increased among those with a family history of the condition.
People of all ages who have noticeable strabismus may experience psychosocial difficulties. Attention has also been drawn to potential socioeconomic impact resulting from cases of detectable strabismus. A socioeconomic consideration exists as well in the context of decisions regarding strabismus treatment, including efforts to re-establish binocular vision and the possibility of stereopsis recovery.
One study has shown that strabismic children commonly exhibit behaviors marked by higher degrees of inhibition, anxiety, and emotional distress, often leading to outright emotional disorders. These disorders are often related to a negative perception of the child by peers. This is due not only to an altered aesthetic appearance, but also because of the inherent symbolic nature of the eye and gaze, and the vitally important role they play in an individual's life as social components. For some, these issues improved dramatically following strabismus surgery. Notably, strabismus interferes with normal eye contact, often causing embarrassment, anger, and feelings of awkwardness, thereby affecting social communication in a fundamental way, with a possible negative effect on self esteem.
Children with strabismus, particularly those with exotropia (an outward turn), may be more likely to develop a mental health disorder than normal-sighted children. Researchers have theorized that esotropia (an inward turn) was not found to be linked to a higher propensity for mental illness due to the age range of the participants, as well as the shorter follow-up time period; esotropic children were monitored to a mean age of 15.8 years, compared with 20.3 years for the exotropic group. A subsequent study with participants from the same area monitored congenital esotropia patients for a longer time period; results indicated that esotropic patients "were" also more likely to develop mental illness of some sort upon reaching early adulthood, similar to those with constant exotropia, intermittent exotropia, or convergence insufficiency. The likelihood was 2.6 times that of controls. No apparent association with premature birth was observed, and no evidence was found linking later onset of mental illness to psychosocial stressors frequently encountered by those with strabismus.
Investigations have highlighted the impact that strabismus may typically have on quality of life. Studies in which subjects were shown images of strabismic and non-strabismic persons showed a strong negative bias towards those visibly displaying the condition, clearly demonstrating the potential for future socioeconomic implications with regard to employability, as well as other psychosocial effects related to an individual's overall happiness.
Adult and child observers perceived a right heterotropia as more disturbing than a left heterotropia, and child observers perceived an esotropia as "worse" than an exotropia. Successful surgical correction of strabismus—for adult patients as well as children—has been shown to have a significantly positive effect on psychological well-being.
Very little research exists regarding coping strategies employed by adult strabismics. One study categorized coping methods into three subcategories: avoidance (refraining from participation an activity), distraction (deflecting attention from the condition), and adjustment (approaching an activity differently). The authors of the study suggested that individuals with strabismus may benefit from psychosocial support such as interpersonal skills training.
No studies have evaluated whether psychosocial interventions have had any benefits on individuals undergoing strabismus surgery.
Young children with strabismus normally suppress the visual field of one eye (or part of it), whereas adults who develop strabismus normally do not suppress and therefore suffer from double vision (diplopia). This also means that adults (and older children) have a higher risk of post-operative diplopia after undergoing strabismus surgery than young children. Patients who have undergone strabismus surgery at a young age often have monofixation syndrome (with peripheral binocular fusion and a central suppression scotoma).
"Congenital esotropia," or "infantile esotropia," is a specific sub-type of primary concomitant esotropia. It is a constant esotropia of large and consistent size with onset between birth and six months of age. It is not associated with hyperopia, so the exertion of accommodative effort will not significantly affect the angle of deviation. It is, however, associated with other ocular dysfunctions including oblique muscle over-actions, Dissociated Vertical Deviation (DVD,) Manifest Latent Nystagmus, and defective abduction, which develops as a consequence of the tendency of those with infantile esotropia to 'cross fixate.' Cross fixation involves the use of the right eye to look to the left and the left eye to look to the right; a visual pattern that will be 'natural' for the person with the large angle esotropia whose eye is already deviated towards the opposing side.
The origin of the condition is unknown, and its early onset means that the affected individual's potential for developing binocular vision is limited. The appropriate treatment approach remains a matter of some debate. Some ophthalmologists favour an early surgical approach as offering the best prospect of binocularity whilst others remain unconvinced that the prospects of achieving this result are good enough to justify the increased complexity and risk associated with operating on those under the age of one year.
Esotropia is a form of strabismus in which one or both eyes turns inward. The condition can be constantly present, or occur intermittently, and can give the affected individual a "cross-eyed" appearance. It is the opposite of exotropia and usually involves more severe axis deviation than esophoria. Esotropia is sometimes erroneously called "lazy eye", which describes the condition of amblyopia—a reduction in vision of one or both eyes that is not the result of any pathology of the eye and cannot be resolved by the use of corrective lenses. Amblyopia can, however, arise as a result of esotropia occurring in childhood: In order to relieve symptoms of diplopia or double vision, the child's brain will ignore or "suppress" the image from the esotropic eye, which when allowed to continue untreated will lead to the development of amblyopia. Treatment options for esotropia include glasses to correct refractive errors (see accommodative esotropia below), the use of prisms and/or orthoptic exercises and/or eye muscle surgery. The term is from Greek "eso" meaning "inward" and "trope" meaning "a turning".
This remains undetermined at the present time. A recent study by Major et al. reports that:
"Prematurity, family history or secondary ocular history, perinatal or gestational complications, systemic disorders, use of supplemental oxygen as a neonate, use of systemic medications, and male sex were found to be significant risk factors for infantile esotropia."
Further recent evidence indicates that a cause for "infantile strabismus" may lie with the input that is provided to the visual cortex. In particular, neonates who suffer injuries that, directly or indirectly, perturb binocular inputs into the primary visual cortex (V1) have a far higher risk of developing strabismus than other infants.
A paper published by Eltern für Impfaufklärung, a German Anti-Vaccination activist group, cites a study by The Robert Koch Institute (RKI), claiming significant correlation between children who received Vaccinations and the onset of cause of Spine, Face & Eye Asymmetry.
Suppression may treated with vision therapy, though there is a wide range of opinions on long-term effectiveness between eye care professionals, with little scientific evidence of long-term improvement of suppression, if the underlying cause is not addressed (strabismus, amblyopia, etc.).
The causes of exotropia are not fully understood. There are six muscles that control eye movement, four that move the eye up and down and two that move it left and right. All these muscles must be coordinated and working properly in order for the brain to see a single image. When one or more of these muscles doesn't work properly, some form of strabismus may occur. Strabismus is more common in children with disorders that affect the brain such as cerebral palsy, Down syndrome, hydrocephalus, and brain tumors. One study has found that children with exotropia are three times more likely to develop a psychiatric disorder in comparison with the general population.
A comprehensive eye examination including an ocular motility (i.e., eye movement) evaluation and an evaluation of the internal ocular structures will allow an eye doctor to accurately diagnose the exotropia. Although glasses and/or patching therapy, exercises, or prisms may reduce or help control the outward-turning eye in some children, surgery is often required.
There is a common form of exotropia known as "convergence insufficiency" that responds well to orthoptic vision therapy including exercises. This disorder is characterized by an inability of the eyes to work together when used for near viewing, such as reading. Instead of the eyes focusing together on the near object, one deviates outward.
"Consecutive exotropia" is an exotropia that arises after an initial esotropia. Most often it results from surgical overcorrection of the initial esotropia. It can be addressed with further surgery or with vision therapy; vision therapy has shown promising results if the consecutive exotropia is intermittent, alternating and of small magnitude. (Consecutive exotropia may however also spontaneously develop from esotropia, without surgery or botulinum toxin treatment.)
Because of the risks of surgery, and because about 35% of people require at least one more surgery, many people try vision therapy first. This consists of visual exercises. Although vision therapy is generally not covered by American health insurance companies, many large insurers such as Aetna have recently begun offering full or partial coverage in response to recent studies.
Strabismus surgery is sometimes recommended if the exotropia is present for more than half of each day or if the frequency is increasing over time. It is also indicated if a child has significant exotropia when reading or viewing near objects or if there is evidence that the eyes are losing their ability to work as a single unit (binocular vision). If none of these criteria are met, surgery may be postponed pending simple observation with or without some form of eyeglass and/or patching therapy. In very mild cases, there is a chance that the exotropia will diminish with time. The long-term success of surgical treatment for conditions such as intermittent exotropia is not well proven, and surgery can often result in a worsening of symptoms due to overcorrection. Evidence from the available literature suggests that unilateral surgery was more effective than bilateral surgery for individuals affected with intermittent exotropia.
The surgical procedure for the correction of exotropia involves making a small incision in the tissue covering the eye in order to reach the eye muscles. The appropriate muscles are then repositioned in order to allow the eye to move properly. The procedure is usually done under general anesthesia. Recovery time is rapid, and most people are able to resume normal activities within a few days. Following surgery, corrective eyeglasses may be needed and, in many cases, further surgery is required later to keep the eyes straight.
When a child requires surgery, the procedure is usually performed before the child attains school age. This is easier for the child and gives the eyes a better chance to work together. As with all surgery, there are some risks. However, strabismus surgery is usually a safe and effective treatment.
Diplopia has a diverse range of ophthalmologic, infectious, autoimmune, neurological, and neoplastic causes.
Refractive surgery causes only minimal size differences, similar to contact lenses. In a study performed on 53 children who had amblyopia due to anisometropia, surgical correction of the anisometropia followed by strabismus surgery if required led to improved visual acuity and even to stereopsis in many of the children ("see:" Refractive surgery#Children).
Temporary binocular diplopia can be caused by alcohol intoxication or head injuries, such as concussion (if temporary double vision does not resolve quickly, one should see an optometrist or ophthalmologist immediately). It can also be a side effect of benzodiazepines or opioids, particularly if used in larger doses for recreation, the anti-epileptic drugs Phenytoin and Zonisamide, and the anti-convulsant drug Lamotrigine, as well as the hypnotic drug Zolpidem and the dissociative drugs Ketamine and Dextromethorphan. Temporary diplopia can also be caused by tired and/or strained eye muscles or voluntarily. If diplopia appears with other symptoms such as fatigue and acute or chronic pain, the patient should see an ophthalmologist immediately.
Controversy has arisen regarding the selection and planning of surgical procedures, the timing of surgery and about what constitutes a favourable outcome.
1. Selection and planning
Some ophthalmologists, notably Ing and Helveston, favour a prescribed approach often involving multiple surgical episodes whereas others prefer to aim for full alignment of the eyes in one procedure and let the number of muscles operated upon during this procedure be determined by the size of the squint.
2. Timing and outcome
This debate relates to the technical anatomical difficulties of operating on the very young versus the possibility of an increased potential for binocularity associated with early surgery. Infants are often operated upon at the age of six to nine months of age and in some cases even earlier at three or four months of age. Some emphasize the importance of intervening early such as to keep the duration of the patient's abnormal visual experience to a minimum. Advocates of early surgery believe that those who have their surgery before the age of one are more likely to be able to use both eyes together post-operatively.
A Dutch study (ELISSS) compared early with late surgery in a prospective, controlled, non-randomized, multicenter trial and reported that:
"Children operated early had better gross stereopsis at age six as compared to children operated late. They had been operated more frequently, however, and a substantial number of children in both [originally-recruited] groups had not been operated at all."
Other studies also report better results with early surgery, notably Birch and Stager and Murray et al. but do not comment on the number of operations undertaken. A recent study on 38 children concluded that surgery for infantile esotropia is most likely to result in measureable stereopsis if patient age at alignment is not more than 16 months.
Another study found that for children with infantile esotropia early surgery decreases the risk of dissociated vertical deviation developing after surgery.
Aside the strabismus itself, there are other aspects or conditions that appear to improve after surgery or botulinum toxin eye alignment. Study outcomes have indicated that after surgery the child catches up in development of fine-motor skills (such as grasping a toy and handling a bottle) and of large-muscle skills (such as sitting, standing, and walking) in case a developmental delay was present before. Evidence also indicates that as of the age of six, strabismic children become less accepted by their peers, leaving them potentially exposed to social exclusion starting at this age unless their eye positioning is corrected by this time ("see also:" Psychosocial effects of strabismus).
Far-sightedness, also known as hyperopia, is a condition of the eye in which light is focused behind, instead of on, the retina. This results in close objects appearing blurry, while far objects may appear normal. As the condition worsens, objects at all distances may be blurry. Other symptoms may include headaches and eye strain. People may also experience accommodative dysfunction, binocular dysfunction, amblyopia, and strabismus.
The cause is an imperfection of the eyes. Often it occurs when the eyeball is too short, or the lens or cornea is misshapen. Risk factors include a family history of the condition, diabetes, certain medications, and tumors around the eye. It is a type of refractive error. Diagnosis is based on an eye exam.
Management can occur with eyeglasses, contact lenses, or surgery. Glasses are easiest while contact lenses can provide a wider field of vision. Surgery works by changing the shape of the cornea. Far-sightedness primarily affects young children, with rates of 8% at 6 years and 1% at 15 years. It then becomes more common again after the age of 40, affecting about half of people.
Among fifth and sixth grade children convergence insufficiency is 13%. In studies that used standardized definitions of Convergence insufficiency, investigators have reported a prevalence of 4.2% to 6% in school and clinic settings. The standard definition of Convergence insufficiency is exophoria greater at near than at distance, a receded near point of convergence, and reduced convergence amplitudes at near.
DVD typically becomes apparent between 18 months and three years of age, however, the difficulties of achieving the prolonged occlusion required for accurate detection in the very young, make it possible that onset is generally earlier than these figures suggest.
Dissociation refers to the situation where the innervation of one eye causes it to move involuntarily and independently of the other eye. Usually both eyes work together as described by Hering's and Sherrington's laws of innervation. A DVD is a slow upward and sometimes temporal movement of one eye, with cortical suppression of the vision in that eye while it is deviated. On returning downward and possibly inward to take up fixation, the DVD slow movement will be reversed.
The dissociative movement seen 'objectively' should not be confused with the dissociation that occurs 'subjectively' - as when the brain begins to not visualise both images simultaneously (by ignoring or suppressing vision in that eye).
As hyperopia is the result of the visual image being focused behind the retina, it has two main causes:
- Low converging power of eye lens because of weak action of ciliary muscles
- Abnormal shape of the cornea
Far-sightedness is often present from birth, but children have a very flexible eye lens, which helps to compensate. In rare instances hyperopia can be due to diabetes, and problems with the blood vessels in the retina.
Presbyopia is a condition associated with aging of the eye that results in progressively worsening ability to focus clearly on close objects. Symptoms include difficulty reading small print, having to hold reading material farther away, headaches, and eyestrain. Different people will have different degrees of problems. Other types of refractive errors may exist at the same time as presbyopia.
Presbyopia is a natural part of the aging process. It is due to hardening of the lens of the eye causing the eye to focus light behind rather than on the retina when looking at close objects. It is a type of refractive error along with nearsightedness, farsightedness, and astigmatism. Diagnosis is by an eye examination.
Treatment is typically with eye glasses. The eyeglasses used have higher focusing power in the lower portion of the lens. Off the shelf reading glasses may be sufficient for some.
People over 35 are at risk for developing presbyopia and all people become affected to some degree. The condition was mentioned as early as the writings of Aristotle in the 4th century BC. Glass lenses first came into use for the problem in the late 13th century.
Many people with near-sightedness can read comfortably without eyeglasses or contact lenses even after age forty. However, their myopia does not disappear and the long-distance visual challenges remain. Myopes considering refractive surgery are advised that surgically correcting their nearsightedness may be a disadvantage after age forty, when the eyes become presbyopic and lose their ability to accommodate or change focus, because they will then need to use glasses for reading. Myopes with astigmatism find near vision better, though not perfect, without glasses or contact lenses when presbyopia sets in, but the more astigmatism, the poorer the uncorrected near vision.
A surgical technique offered is to create a "reading eye" and a "distance vision eye," a technique commonly used in contact lens practice, known as monovision. Monovision can be created with contact lenses, so candidates for this procedure can determine if they are prepared to have their corneas reshaped by surgery to cause this effect permanently.
Esophoria is an eye condition involving inward deviation of the eye, usually due to extra-ocular muscle imbalance. It is a type of heterophoria.
Causes include:
- Refractive errors
- Divergence insufficiency
- Convergence excess; this can be due to nerve, muscle, congenital or mechanical anomalies.
Unlike esotropia, fusion is possible and therefore diplopia is uncommon.
The symptoms and signs associated with convergence insufficiency are related to prolonged, visually demanding, near-centered tasks. They may include, but are not limited to, diplopia (double vision), asthenopia (eye strain), transient blurred vision, difficulty sustaining near-visual function, abnormal fatigue,
headache, and abnormal postural adaptation, among others. In some cases, difficulty with making eye contact have been noted as a complaint amongst sufferers.
Note that some Internet resources confuse convergence and divergence dysfunction, reversing them.
The eye, like any other optical system, suffers from a number of specific optical aberrations. The optical quality of the eye is limited by optical aberrations, diffraction and scatter. Correction of spherocylindrical refractive errors has been possible for nearly two centuries following Airy's development of methods to measure and correct ocular astigmatism. It has only recently become possible to measure the aberrations of the eye and with the advent of refractive surgery it might be possible to correct certain types of irregular astigmatism.
The appearance of visual complaints such as halos, glare and monocular diplopia after corneal refractive surgery has long been correlated with the induction of optical aberrations. Several mechanisms may explain the increase in the amount of higher-order aberrations with conventional eximer laser refractive procedures: a change in corneal shape toward oblateness or prolateness (after myopic and hyperopic ablations respectively), insufficient optical zone size and imperfect centration. These adverse effects are particularly noticeable when the pupil is large.
Quantitative comparisons between different eyes and conditions are usually made using RMS (root mean square). To measure RMS for each type of aberration involves squaring the difference between the aberration and mean value and averaging it across the pupil area. Different kinds of aberrations may have equal RMS across the pupil but have different effects on vision, therefore, RMS error is unrelated to visual performance. The majority of eyes have total RMS values less than 0.3 µm.
The most common method of classifying the shapes of aberration maps is to consider each map as the sum of fundamental shapes or basis functions. One popular set of basis functions are the Zernike polynomials. Each aberration may be positive or negative in value and induces predictable alterations in the image quality.
Because there is no limit to the number of terms that may be used by Zernike polynomials, vision scientists use the first 15 polynomials, based on the fact that they are enough to obtain a highly accurate description of the most common aberrations found in human eye. Among these the most important Zernike coefficients affecting visual quality are coma, spherical aberration, and trefoil.
Zernike polynomials are usually expressed in terms of polar coordinates (ρ,θ), where ρ is radial coordinate and θ is the angle. The advantage of expressing the aberrations in terms of these polynomials includes the fact that the polynomials are independent of one another. For each polynomial the mean value of the aberration across the pupil is zero and the value of the coefficient gives the RMS error for that particular aberration (i.e. the coefficients show the relative contribution of each Zernike mode to the total wavefront error in the eye). However these polynomials have the disadvantage that their coefficients are only valid for the particular pupil diameter they are determined for.
In each Zernike polynomial formula_1, the subscript n is the order of aberration, all the Zernike polynomials in which n=3 are called third-order aberrations and all the polynomials with n=4, fourth order aberrations and so on. formula_2 and formula_3 are usually called secondary Astigmatism and should not cause confusion. The superscript m is called the angular frequency and denotes the number of times the Wavefront pattern repeats itself.
List of Zernike modes and their common names: