Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Most of the mites which cause this affliction to humans are from the order Acari, hence the name Acariasis. The entire taxonomic classification to order would be:
- Kingdom: Animalia
- Phylum: Arthropoda
- Subphylum: Chelicerata
- Class: Arachnida
- Order: Acari (At the order level, there is still substantial argument among researchers as to how to categorize Acari. Some call it a subclass, others a superorder, "Acarina".)
Specific species involved include:
- Acariformes
- Trombidiformes
- "Trombicula" species (trombiculosis or chiggers)
- "Demodex" species (Demodicosis)
- "Pyemotes tritici"
- "Cheyletiella"
- Sarcoptiformes
- "Sarcoptes scabiei" (Scabies)
- Parasitiformes
- "Dermanyssus gallinae"
- "Liponyssoides sanguineus"
- "Ornithonyssus bacoti", "Ornithonyssus bursa", "Ornithonyssus sylviarum"
- Another candidate is "Androlaelaps casalis". However, based on this mite's life style as a predator on other mite species (such as the previously-mentioned "Dermanyssus gallinae"), it is highly unlikely to be a cause of acariasis.
Some of these reflect reports existing of human infestation by mites previously believed not to prey on humans.
There are several complications with the terminology:
Acariasis is a term for a rash, caused by mites, sometimes with a papillae (pruritic dermatitis), and usually accompanied by severe itching sensations. An example of such an infection is scabies.
The closely related term, mange, is commonly used with domestic animals (pets) and also livestock and wild mammals, whenever hair-loss is involved. "Sarcoptes" and "Demodex" species are involved in mange, but both of these genera are also involved in human skin diseases (by convention only, not called mange). "Sarcoptes" in humans is especially severe symptomatically, and causes the condition scabies noted above.
Another genus of mite which causing itching but rarely causes hair loss because it burrows only at the keratin level, is "Cheyletiella." Various species of this genus of mite also affect a wide variety of mammals, including humans.
Mite infestation sometimes implies an ectoparasitic, cutaneous condition such as dermatitis. However, it is possible for mites to invade the gastrointestinal and urinary tracts.
MeSH uses the term "Mite Infestations" as pertaining to Acariformes. However, mites not in this grouping can be associated with human disease. (See "Classification", below.)
The term Acari refers to ticks and mites together, which can cause ambiguity. (Mites are a paraphyletic grouping).
Mites can be associated with disease in at least three different ways: (1) cutaneous dermatitis, (2) production of allergin, and (3) as a vector for parasitic diseases. The language used to describe mite infestation often does not distinguish among these.
Mange is a class of skin diseases caused by parasitic mites. Since mites also infect plants, birds, and reptiles, the term "mange", suggesting poor condition of the hairy coat due to the infection, is sometimes reserved only for pathological mite-infestation of nonhuman mammals. Thus, mange includes mite-associated skin disease in domestic animals (cats and dogs), in livestock (such as sheep scab), and in wild animals (for example, coyotes, cougars, and bears). Since mites belong to the arachnid subclass Acari (also called Acarina), another term for mite infestation is acariasis.
Parasitic mites that cause mange in mammals embed themselves either in skin or hair follicles in the animal, depending upon their genus. "Sarcoptes" spp. burrow into skin, while "Demodex" spp. live in follicles.
In humans, these two types of mite infections, which would otherwise be known as "mange" in furry mammals, are instead known respectively as scabies and demodicosis.
Affected dogs need to be isolated from other dogs and their bedding, and places they have occupied must be thoroughly cleaned. Other dogs in contact with a diagnosed case should be evaluated and treated. A number of parasitical treatments are useful in treating canine scabies. Sulfurated lime (a mixture of calcium polysulfides) rinses applied weekly or biweekly are effective (the concentrated form for use on plants as a fungicide must be diluted 1:16 or 1:32 for use on animal skin).
Selamectin is licensed for treatment in dogs by veterinary prescription in several countries; it is applied as a dose directly to the skin, once per month (the drug does not wash off). A related and older drug ivermectin is also effective and can be given by mouth for two to four weekly treatments or until two negative skin scrapings are achieved. Oral ivermectin is not safe to use on some collie-like herding dogs, however, due to possible homozygous MDR1 (P-glycoprotein) mutations that increase its toxicity by allowing it into the brain. Ivermectin injections are also effective and given in either weekly or every two weeks in one to four doses, although the same MDR1 dog restrictions apply.
Affected cats can be treated with fipronil and milbemycin oxime.
Topical 0.01% ivermectin in oil (Acarexx) has been reported to be effective in humans, and all mite infections in many types of animals (especially in ear mite infections where the animal cannot lick the treated area), and is so poorly absorbed that systemic toxicity is less likely in these sites. Nevertheless, topical ivermectin has not been well enough tested to be approved for this use in dogs, and is theoretically much more dangerous in zones where the animal can potentially lick the treated area. Selamectin applied to the skin (topically) has some of the same theoretical problems in collies and MDR1 dogs as ivermectin, but it has nevertheless been approved for use for all dogs provided that the animal can be observed for 8 hours after the first monthly treatment. Topical permethrin is also effective in both dogs and humans, but is toxic to cats.
Afoxolaner (oral treatment with a chewable tablet containing afoxolaner 2.27% w/w) has been shown to be efficient against both sarcoptic and demodectic mange in dogs.
Sarcoptic mange is transmissible to humans who come into prolonged contact with infested animals, and is distinguished from human scabies by its distribution on skin surfaces covered by clothing. For treatment of sarcoptic infection in humans, see scabies. For demodetic infection in humans, which is not as severe as it is in animals with thicker coats (such as dogs), see "Demodex folliculorum".