Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Genitopatellar Syndrome is an autosomal dominant inheritance where the mutation in the KAT6B causes the syndrome. The KAT6B gene is responsible for making an enzyme called histone acetyltransferase which functions in regulating and making of histone which are proteins that attach to DNA and give the chromosomes their shape. The function of histone acetyltransferase produced from KAT6B is unknown but it is considered as a regulator of early developments. There is little known about how the mutation in the KAT6B causes the syndrome but researchers suspects that the mutations occur near the end of the KAT6B gene and causes it to produce shortened acetyltransferase enzyme. The shortened enzyme alters the regulation of other genes. On the other hand, the mutation of KAT6B leading to the specific features of genitopatellar syndrome is still not surely proven.
Recent research has been focused on studying large series of cases of 3-M syndrome to allow scientists to obtain more information behind the genes involved in the development of this disorder. Knowing more about the underlying mechanism can reveal new possibilities for treatment and prevention of genetic disorders like 3-M syndrome.
- One study looks at 33 cases of 3M syndrome, 23 of these cases were identified as CUL7 mutations: 12 being homozygotes and 11 being heterozygotes. This new research shows genetic heterogeneity in 3M syndrome, in contrast to the clinical homogeneity. Additional studies are still ongoing and will lead to the understanding of this new information.
- This study provides more insight on the three genes involved in 3M syndrome and how they interact with each other in normal development. It lead to the discovery that the CUL7, OBS1, and CCDC8 form a complex that functions to maintain microtubule and genomic integrity.
Genitopatellar syndrome is a rare disorder with characteristic craniofacial features, congenital flexion contractures of the lower limbs, absent or abnormal patellae, urogenital anomalies, and severe psychomotor retardation.
In 2012, it was shown that mutations in the gene KAT6B cause the syndrome.
There have been 30 cases of Marden-Walker Syndrome reported since 1966. The first case of this was in 1966 a female infant was diagnosed with blepharophimosis, joint contractures, arachnodactyly and growth development delay. She ended up passing at 3 months due to pneumonia.
3-M syndrome is most often caused by a mutation in the gene CUL7, but can also be seen with mutations in the genes OBS1 and CCDC8 at lower frequencies. This is an inheritable disorder and can be passed down from parent to offspring in an autosomal recessive pattern. An individual must receive two copies of the mutated gene, one from each parent, in order to be have 3-M syndrome. An individual can be a carrier for the disorder if they inherit only one mutant copy of the gene, but will not present any of the symptoms associated with the disorder.
Since 3-M syndrome is a genetic condition there are no known methods to preventing this disorder. However, genetic testing on expecting parents and prenatal testing, which is a molecular test that screens for any problems in the heath of a fetus during pregnancy, may be available for families with a history of this disorder to determine the fetus' risk in inheriting this genetic disorder.
3C syndrome is very rare, occurring in less than 1 birth per million. Because of consanguinity due to a founder effect, it is much more common in a remote First Nations village in Manitoba, where 1 in 9 people carries the recessive gene.
The disorder can be associated with a number of psychological symptoms, anxiety, depression, social phobia, body image disorders, and patients may be subjected to discrimination, bullying and name calling especially when young. A multi-disciplinary team and parental support should include these issues.
TCS occurs in about one in 50,000 births in Europe. Worldwide, it is estimated to occur in one in 10,000 to one in 50,000 births.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
This disorder is caused by an abnormality of the TBCE gene, the locus for which is on Chromosome 1q42.3. The locus is a 230 kb region of gene with identified deletions and mutations in affected individuals. There are rare cases of the disorder not being due to a TBCE gene abnormality.
Several people with distal 18q- have been diagnosed with low IgA levels, resulting in an increased incidence of infections.
The cause of this condition is not known. A genetic basis is suspected. More than one case have been reported in three families.
The condition develops in the fetus at approximately 4 weeks gestational age, when some form of vascular problem such as blood clotting leads to insufficient blood supply to the face. This can be caused by physical trauma, though there is some evidence of it being hereditary . This restricts the developmental ability of that area of the face. Currently there are no definitive reasons for the development of the condition.
Hypothyroidism has been reported in some people with distal 18q-.
A low socioeconomic status in a deprived neighborhood may include exposure to “environmental stressors and risk factors.” Socioeconomic inequalities are commonly measured by the Cartairs-Morris score, Index of Multiple Deprivation, Townsend deprivation index, and the Jarman score. The Jarman score, for example, considers “unemployment, overcrowding, single parents, under-fives, elderly living alone, ethnicity, low social class and residential mobility.” In Vos’ meta-analysis these indices are used to view the effect of low SES neighborhoods on maternal health. In the meta-analysis, data from individual studies were collected from 1985 up until 2008. Vos concludes that a correlation exists between prenatal adversities and deprived neighborhoods. Other studies have shown that low SES is closely associated with the development of the fetus in utero and growth retardation. Studies also suggest that children born in low SES families are “likely to be born prematurely, at low birth weight, or with asphyxia, a birth defect, a disability, fetal alcohol syndrome, or AIDS.” Bradley and Corwyn also suggest that congenital disorders arise from the mother’s lack of nutrition, a poor lifestyle, maternal substance abuse and “living in a neighborhood that contains hazards affecting fetal development (toxic waste dumps).” In a meta-analysis that viewed how inequalities influenced maternal health, it was suggested that deprived neighborhoods often promoted behaviors such as smoking, drug and alcohol use. After controlling for socioeconomic factors and ethnicity, several individual studies demonstrated an association with outcomes such as perinatal mortality and preterm birth.
Facial femoral syndrome is a rare congenital disorder. It is also known as femoral dysgenesis, bilateral femoral dysgenesis, bilateral-Robin anomaly and femoral hypoplasia-unusual facies syndrome. The main features of this disorder are underdeveloped thigh bones (femurs) and unusual facial features.
Marden–Walker syndrome (MWS) is a rare autosomal recessive congenital disorder. It is characterized by blepharophimosis, microcephaly, micrognathia, multiple joint contractures, arachnodactyly, camptodactyly, kyphoscoliosis, and delayed motor development and is often associated with cystic dysplastic kidneys, dextrocardia, Dandy-Walker malformation, and agenesis of corpus callosum".
The incidence of Fraser syndrome is 0.043 per 10,000 live born infants and 1.1 in 10,000 stillbirths, making it a rare syndrome.
Young–Simpson syndrome (YSS) is a rare congenital disorder with symptoms including hypothyroidism, heart defects, facial dysmorphism, cryptorchidism in males, hypotonia, mental retardation and postnatal growth retardation.
Other symptoms include transient hypothyroidism, macular degeneration and torticollis. The condition was discovered in 1987 and the name arose from the individuals who first reported the syndrome. An individual with
YSS has been identified with having symptoms to a similar syndrome known as Ohdo Blepharophimosis syndrome, showing that it is quite difficult to diagnose the correct condition based on the symptoms present. Some doctors therefore consider these syndromes to be the same.
The mode of inheritance has had mixed findings based on studies undertaken. One study showed that the parents of an individual with YSS are unrelated and phenotypically normal, indicating a sporadic mutation, thus making it difficult to base the cause of the condition on genetic makeup alone. However, another study was done of an individual with YSS who had first cousins as parents, giving the possibility of autosomal recessive inheritance.
Prognoses for 3C syndrome vary widely based on the specific constellation of symptoms seen in an individual. Typically, the gravity of the prognosis correlates with the severity of the cardiac abnormalities. For children with less severe cardiac abnormalities, the developmental prognosis depends on the cerebellar abnormalities that are present. Severe cerebellar hypoplasia is associated with growth and speech delays, as well as hypotonia and general growth deficiencies.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
Hennekam syndrome also known as intestinal lymphagiectasia–lymphedema–mental retardation syndrome, is an autosomal recessive disorder consisting of intestinal lymphangiectasia, facial anomalies, peripheral lymphedema, and mild to moderate levels of growth and intellectual disability.
It is also known as "lymphedema-lymphangiectasia-mental retardation syndrome".
In a subset of patients it is associated with CCBE1 according research published by its namesake, Raoul Hennekam. Other causal mutations were found in the FAT4 gene. Previously, mutations in the FAT4 gene had been only associated with van Maldergem syndrome. The molecular mechanism of the lymphedema phenotype in CCBE1-associated cases was identified as a diminished ability of the mutated CCBE1 to accelerate and focus the activation of the primary lymphangiogenic growth factor VEGF-C.
Treatment is symptomatic, often addressing indicators associated with peripheral pulmonary artery stenosis. Laryngotracheal calcification resulting in dyspnea and forceful breathing can be treated with bronchodilators including the short and long-acting β2-agonists, and various anticholinergics. Prognosis is good, yet life expectancy depends on the severity and extent of diffuse pulmonary and arterial calcification.
Seaver Cassidy syndrome is a very rare disorder characterized by certain facial, genital, and skeletal deformities, as well as an unusual susceptibility to bleeding. Seaver Cassidy syndrome was first described in 1991 by Laurie Seaver and Suzanne Cassidy.
There is still some discussion on whether FND is sporadic or genetic. The majority of FND cases are sporadic. Yet, some studies describe families with multiple members with FND. Gene mutations are likely to play an important role in the cause. Unfortunately, the genetic cause for most types of FND remains undetermined.