Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Coronary artery disease has a number of well determined risk factors. These include high blood pressure, smoking, diabetes, lack of exercise, obesity, high blood cholesterol, poor diet, depression, family history, and excessive alcohol. About half of cases are linked to genetics. Smoking and obesity are associated with about 36% and 20% of cases, respectively. Lack of exercise has been linked to 7–12% of cases. Exposure to the herbicide Agent orange may increase risk. Both rheumatoid arthritis and systemic lupus erythematosus are independent risk factors as well.
Job stress appears to play a minor role accounting for about 3% of cases.
In one study, women who were free of stress from work life saw an increase in the diameter of their blood vessels, leading to decreased progression of atherosclerosis. In contrast, women who had high levels of work-related stress experienced a decrease in the diameter of their blood vessels and significantly increased disease progression. Having a type A behavior pattern, a group of personality characteristics including time urgency, competitiveness, hostility, and impatience is linked to an increased risk of coronary disease.
The relation between dietary fat and atherosclerosis is controversial. Writing in "Science", Gary Taubes detailed that political considerations played into the recommendations of government bodies. The USDA, in its food pyramid, promotes a diet of about 64% carbohydrates from total calories. The American Heart Association, the American Diabetes Association and the National Cholesterol Education Program make similar recommendations. In contrast, Prof Walter Willett (Harvard School of Public Health, PI of the second Nurses' Health Study) recommends much higher levels of fat, especially of monounsaturated and polyunsaturated fat. These differing views reach a consensus, though, against consumption of trans fats.
The role of dietary oxidized fats/lipid peroxidation (rancid fats) in humans is not clear.
Laboratory animals fed rancid fats develop atherosclerosis. Rats fed DHA-containing oils experienced marked disruptions to their antioxidant systems, and accumulated significant amounts of phospholipid hydroperoxide in their blood, livers and kidneys.
Rabbits fed atherogenic diets containing various oils were found to undergo the greatest amount of oxidative susceptibility of LDL via polyunsaturated oils. In another study, rabbits fed heated soybean oil "grossly induced atherosclerosis and marked liver damage were histologically and clinically demonstrated." However, Fred Kummerow claims that it is not dietary cholesterol, but oxysterols, or oxidized cholesterols, from fried foods and smoking, that are the culprit.
Rancid fats and oils taste very bad even in small amounts, so people avoid eating them.
It is very difficult to measure or estimate the actual human consumption of these substances. Highly unsaturated omega-3 rich oils such as fish oil are being sold in pill form so that the taste of oxidized or rancid fat is not apparent. The health food industry's dietary supplements are self regulated and outside of FDA regulations. To properly protect unsaturated fats from oxidation, it is best to keep them cool and in oxygen free environments.
Risk factors contributing to PAD are the same as those for atherosclerosis:
- Smoking – tobacco use in any form is the single most important modifiable cause of PAD internationally. Smokers have up to a tenfold increase in relative risk for PAD in a dose-response relationship. Exposure to second-hand smoke from environmental exposure has also been shown to promote changes in blood vessel lining (endothelium) which is a precursor to atherosclerosis. Smokers are 2 to 3 times more likely to have lower extremity peripheral arterial disease than coronary artery disease. More than 80%-90% of patients with lower extremity peripheral arterial disease are current or former smokers. The risk of PAD increases with the number of cigarettes smoked per day and the number of years smoked.
- Diabetes mellitus – causes between two and four times increased risk of PAD by causing endothelial and smooth muscle cell dysfunction in peripheral arteries. The risk of developing lower extremity peripheral arterial disease is proportional to the severity and duration of diabetes.
- Dyslipidemia – a high level of low-density lipoprotein (LDL cholesterol) and a low level of high-density lipoprotein (HDL cholesterol) in the blood) - elevation of total cholesterol, LDL cholesterol, and triglyceride levels each have been correlated with accelerated PAD. Correction of dyslipidemia by diet and/or medication is associated with a major improvement in rates of heart attack and stroke.
- Hypertension – elevated blood pressure is correlated with an increase in the risk of developing PAD, as well as in associated coronary and cerebrovascular events (heart attack and stroke). Hypertension increased the risk of intermittent claudication 2.5- to 4-fold in men and women, respectively.
- Risk of PAD also increases in individuals who are over the age of 50, male, obese, heart attack, or stroke or with a family history of vascular disease.
- Other risk factors which are being studied include levels of various inflammatory mediators such as C-reactive protein, fibrinogen, hyperviscosity, hypercoagulable state.
In 2011, coronary atherosclerosis was one of the top ten most expensive conditions seen during inpatient hospitalizations in the U.S., with aggregate inpatient hospital costs of $10.4 billion.
Dietary cholesterol does not appear to have a significant effect on blood cholesterol and thus recommendations about its consumption may not be needed. Saturated fat is still a concern.
A study showed that those who quit smoking reduced their risk of being hospitalized over the next two years.
Smoking increases blood pressure, as well as increases the risk of high cholesterol. Quitting can lower blood pressure, and triglyceride levels.
Secondhand smoke is also bad for the heart health.
Peripheral arterial disease is more common in the following populations of people:
- All people who have leg symptoms with exertion (suggestive of claudication) or ischemic rest pain.
- All people aged 65 years and over regardless of risk factor status.
- All people between the age of 50 to 69 and who have a cardiovascular risk factor (particularly diabetes or smoking).
- Age less than 50 years, with diabetes and one other atherosclerosis risk factor (smoking, dyslipidemia, hypertension, or hyperhomocysteinemia).
- Individuals with an abnormal lower extremity pulse examination.
- Those with known atherosclerotic coronary, carotid, or renal artery disease.
- All people with a Framingham risk score 10%-20%
- All people who have previously experienced chest pain
Diet is a very important factor in getting coronary ischemia or coronary artery disease and preventing it.
A heart healthy diet is low in saturated fat and cholesterol and high in complex carbohydrates.
Complex carbohydrates include fruits, vegetables, and whole grains. These food choices can reduce the risk of a heart attack or any other congestive heart failure event.
A heart healthy diet also includes low sodium intake and a higher potassium intake. A low potassium intake raises blood pressure, as does a diet high in sodium.
Generally, it has a good prognosis. In Kawasaki's disease, untreated, there is a 1–2% death rate, from cardiac causes.
One of the most important features differentiating ischemic cardiomyopathy from the other forms of cardiomyopathy is the shortened, or worsened all-cause mortality in patients with ischemic cardiomyopathy. According to several studies, coronary artery bypass graft surgery has a survival advantage over medical therapy (for ischemic cardiomyopathy) across varied follow-ups.
In developed countries, with improved public health, infection control and increasing life spans, atheroma processes have become an increasingly important problem and burden for society.
Atheromata continue to be the primary underlying basis for disability and death, despite a trend for gradual improvement since the early 1960s (adjusted for patient age). Thus, increasing efforts towards better understanding, treating and preventing the problem are continuing to evolve.
According to United States data, 2004, for about 65% of men and 47% of women, the first symptom of cardiovascular disease is myocardial infarction (heart attack) or sudden death (death within one hour of symptom onset).
A significant proportion of artery flow-disrupting events occur at locations with less than 50% lumenal narrowing. Cardiac stress testing, traditionally the most commonly performed noninvasive testing method for blood flow limitations, generally only detects lumen narrowing of ~75% or greater, although some physicians advocate nuclear stress methods that can sometimes detect as little as 50%.
The sudden nature of the complications of pre-existing atheroma, vulnerable plaque (non-occlusive or soft plaque), have led, since the 1950s, to the development of intensive care units and complex medical and surgical interventions. Angiography and later cardiac stress testing was begun to either visualize or indirectly detect stenosis. Next came bypass surgery, to plumb transplanted veins, sometimes arteries, around the stenoses and more recently angioplasty, now including stents, most recently drug coated stents, to stretch the stenoses more open.
Yet despite these medical advances, with success in reducing the symptoms of angina and reduced blood flow, atheroma rupture events remain the major problem and still sometimes result in sudden disability and death despite even the most rapid, massive and skilled medical and surgical intervention available anywhere today. According to some clinical trials, bypass surgery and angioplasty procedures have had at best a minimal effect, if any, on improving overall survival. Typically mortality of bypass operations is between 1 and 4%, of angioplasty between 1 and 1.5%.
Additionally, these vascular interventions are often done only after an individual is symptomatic, often already partially disabled, as a result of the disease. It is also clear that both angioplasty and bypass interventions do not prevent future heart attack.
The older methods for understanding atheroma, dating to before World War II, relied on autopsy data. Autopsy data has long shown initiation of fatty streaks in later childhood with slow asymptomatic progression over decades.
One way to see atheroma is the very invasive and costly IVUS ultrasound technology; it gives us the precise volume of the inside intima plus the central media layers of about of artery length. Unfortunately, it gives no information about the structural strength of the artery. Angiography does not visualize atheroma; it only makes the blood flow within blood vessels visible. Alternative methods that are non or less physically invasive and less expensive per individual test have been used and are continuing to be developed, such as those using computed tomography (CT; led by the electron beam tomography form, given its greater speed) and magnetic resonance imaging (MRI). The most promising since the early 1990s has been EBT, detecting calcification within the atheroma before most individuals start having clinically recognized symptoms and debility. Interestingly, statin therapy (to lower cholesterol) does not slow the speed of calcification as determined by CT scan. MRI coronary vessel wall imaging, although currently limited to research studies, has demonstrated the ability to detect vessel wall thickening in asymptomatic high risk individuals. As a non-invasive, ionising radiation free technique, MRI based techniques could have future uses in monitoring disease progression and regression. Most visualization techniques are used in research, they are not widely available to most patients, have significant technical limitations, have not been widely accepted and generally are not covered by medical insurance carriers.
From human clinical trials, it has become increasingly evident that a more effective focus of treatment is slowing, stopping and even partially reversing the atheroma growth process. There are several prospective epidemiologic studies including the Atherosclerosis Risk in Communities (ARIC) Study and the Cardiovascular Health Study (CHS), which have supported a direct correlation of Carotid Intima-media thickness (CIMT) with myocardial infarction and stroke risk in patients without cardiovascular disease history. The ARIC Study was conducted in 15,792 individuals between 5 and 65 years of age in four different regions of the US between 1987 and 1989. The baseline CIMT was measured and measurements were repeated at 4- to 7-year intervals by carotid B mode ultrasonography in this study. An increase in CIMT was correlated with an increased risk for CAD. The CHS was initiated in 1988, and the relationship of CIMT with risk of myocardial infarction and stroke was investigated in 4,476 subjects ≤65 years of age. At the end of approximately six years of follow-up, CIMT measurements were correlated with cardiovascular events.
Paroi artérielle et Risque Cardiovasculaire in Asia Africa/Middle East and Latin America (PARC-AALA) is another important large-scale study, in which 79 centers from countries in Asia, Africa, the Middle East, and Latin America participated, and the distribution of CIMT according to different ethnic groups and its association with the Framingham cardiovascular score was investigated. Multi-linear regression analysis revealed that an increased Framingham cardiovascular score was associated with CIMT, and carotid plaque independent of geographic differences.
Cahn et al. prospectively followed-up 152 patients with coronary artery disease for 6–11 months by carotid artery ultrasonography and noted 22 vascular events (myocardial infarction, transient ischemic attack, stroke, and coronary angioplasty) within this time period. They concluded that carotid atherosclerosis measured by this non-interventional method has prognostic significance in coronary artery patients.
In the Rotterdam Study, Bots et al. followed 7,983 patients >55 years of age for a mean period of 4.6 years, and reported 194 incident myocardial infarctions within this period. CIMT was significantly higher in the myocardial infarction group compared to the other group. Demircan et al. found that the CIMT of patients with acute coronary syndrome were significantly increased compared to patients with stable angina pectoris.
It has been reported in another study that a maximal CIMT value of 0.956 mm had 85.7% sensitivity and 85.1% specificity to predict angiographic CAD. The study group consisted of patients admitted to the cardiology outpatient clinic with symptoms of stable angina pectoris. The study showed CIMT was higher in patients with significant CAD than in patients with non-critical coronary lesions. Regression analysis revealed that thickening of the mean intima-media complex more than 1.0 was predictive of significant CAD our patients. There was incremental significant increase in CIMT with the number coronary vessel involved. In accordance with the literature, it was found that CIMT was significantly higher in the presence of CAD. Furthermore, CIMT was increased as the number of involved vessels increased and the highest CIMT values were noted in patients with left main coronary involvement. However, human clinical trials have been slow to provide clinical & medical evidence, partly because the asymptomatic nature of atheromata make them especially difficult to study. Promising results are found using carotid intima-media thickness scanning (CIMT can be measured by B-mode ultrasonography), B-vitamins that reduce a protein corrosive, homocysteine and that reduce neck carotid artery plaque volume and thickness, and stroke, even in late-stage disease.
Additionally, understanding what drives atheroma development is complex with multiple factors involved, only some of which, such as lipoproteins, more importantly lipoprotein subclass analysis, blood sugar levels and hypertension are best known and researched. More recently, some of the complex immune system patterns that promote, or inhibit, the inherent inflammatory macrophage triggering processes involved in atheroma progression are slowly being better elucidated in animal models of atherosclerosis.
Many approaches have been promoted as methods to reduce or reverse atheroma progression:
- eating a diet of raw fruits, vegetables, nuts, beans, berries, and grains;
- consuming foods containing omega-3 fatty acids such as fish, fish-derived supplements, as well as flax seed oil, borage oil, and other non-animal-based oils;
- abdominal fat reduction;
- aerobic exercise;
- inhibitors of cholesterol synthesis (known as statins);
- low normal blood glucose levels (glycosylated hemoglobin, also called HbA1c);
- micronutrient (vitamins, potassium, and magnesium) consumption;
- maintaining normal, or healthy, blood pressure levels;
- aspirin supplement
- cyclodextrin can solubilize cholesterol, removing it from plaques
Put simply, take steps to live a healthy, sustainable lifestyle.
Genetic factors influence the development of cardiovascular disease in men who are less than 55 years-old and in women who are less than 65 years old. Cardiovascular disease in a person's parents increases their risk by 3 fold. Multiple single nucleotide polymorphisms (SNP) have been found to be associated with cardiovascular disease in genetic association studies, but usually their individual influence is small, and genetic contributions to cardiovascular disease are poorly understood.
Age is by far the most important risk factor in developing cardiovascular or heart diseases, with approximately a tripling of risk with each decade of life. Coronary fatty streaks can begin to form in adolescence. It is estimated that 82 percent of people who die of coronary heart disease are 65 and older. At the same time, the risk of stroke doubles every decade after age 55.
Multiple explanations have been proposed to explain why age increases the risk of cardiovascular/heart diseases. One of them is related to serum cholesterol level. In most populations, the serum total cholesterol level increases as age increases. In men, this increase levels off around age 45 to 50 years. In women, the increase continues sharply until age 60 to 65 years.
Aging is also associated with changes in the mechanical and structural properties of the vascular wall, which leads to the loss of arterial elasticity and reduced arterial compliance and may subsequently lead to coronary artery disease.
Coronary artery ectasia is a rare disease that occurs in only 0.3-4.9% of people in North America. Coronary artery ectasia is characterized by the enlargement of a coronary artery to 1.5 times or more than its normal diameter. The disease is commonly asymptomatic and is normally discovered when performing tests for other conditions such as coronary artery disease, stable angina and other acute coronary syndromes. Coronary artery ectasia occurs 4 times more frequently in males than in females and in people who have risk factors for heart disease such as smokers. While the disease is commonly found in patients with atherosclerosis and coronary artery disease, it can occur by itself and in both cases it can cause health problems. The disease can cause the heart tissue to be deprived of blood and die due to decreased blood flow, and blockages due to blood clots or spasms of the blood vessel. This blood flow disruption can cause permanent damage to the muscle if the deprivation is prolonged. Coronary artery ectasia also increases the chance of developing large weak spots in the affected coronary arteries, or aneurysms that can rupture and result in death. The damage can result in angina which is pain in the chest and is a common complaint in these patients.
Ischemic cardiomyopathy is the cause of more than 60% of all cases of systolic congestive heart failure in most countries of the world. A chest radiography that demonstrates coronary artery calcification is a probable indication of ischemic cardiomyopathy.
The following are causes of ischemic cardiomyopathy:
- Diabetes
- Atherosclerosis
- Vasospasm
- Inflammation of arteries
Acquired causes include atherosclerosis, Kawasaki disease and coronary catheterization.
It can also be congenital.
The treatment of coronary artery ectasia is normally done in conjunction with therapies of other heart disorders such as atherosclerosis and hypertension. To prevent the formation of blood clots and the blockage of the vessels, patients are commonly placed on anticoagulant therapy (e.g. warfarin, and aspirin), as well as anti-spasm therapy of calcium channel blockers. Coronary artery ectasia also responds to statins and ACE inhibitors.
There is evidence to suggest that a major cause of spontaneous coronary artery dissection (SCAD) is related to female hormone levels, as most cases appear to arise in pre-menopausal women, although there is evidence that the condition can have various triggers. Other underlying conditions such as hypertension, recent delivery of a baby, fibromuscular dysplasia and connective-tissue disorders (e.g., Marfan syndrome and Ehlers-Danlos syndrome) may occasionally result in SCAD. There is also a possibility that vigorous exercise can be a trigger. However, many cases have no obvious cause.
Major risk factors for cerebral infarction are generally the same as for atherosclerosis: high blood pressure, Diabetes mellitus, tobacco smoking, obesity, and dyslipidemia. The American Heart Association/American Stroke Association (AHA/ASA) recommends controlling these risk factors in order to prevent stroke. The AHA/ASA guidelines also provide information on how to prevent stroke if someone has more specific concerns, such as Sickle-cell disease or pregnancy. It is also possible to calculate the risk of stroke in the next decade based on information gathered through the Framingham Heart Study.
In 2008, the US had an estimate of 16 million atherosclerotic heart disease and 5.8 million strokes. Cardiovascular diseases that were caused by arteriosclerosis also caused almost 812,000 deaths in 2008, more than any other cause, including cancer. About 1.2 million Americans are predicted to have a heart attack each year.
Coronary thrombosis is the formation of a blood clot inside a blood vessel of the heart. This blood clot restricts blood flow within the heart. It is associated with narrowing of blood vessels subsequent to clotting. The condition is considered as a type of ischaemic heart disease, also known as a heart attack or myocardial infarction.
Thrombosis in the heart can lead to a myocardial infarction. Coronary thrombosis and myocardial infarction are sometimes used as synonyms, although this is technically inaccurate as the thrombosis refers to the blocking of blood vessels, while the infarction refers to the tissue death due to the consequent loss of blood flow to the heart tissue. The heart contains many connecting blood vessels, and depending upon the location of the thrombosis, the infarction may cause no symptoms. Coronary thrombosis is caused by atherosclerosis.This is when there is build up of cholesterol and fats in the artery walls. So the blood will clot because there isn't enough room for it to flow. The main causes of coronary thrombosis are stress, smoking, high blood pressure, and lack of exercise. Symptoms are sharp pains around the chest area, breathing difficulties, dizziness, and fainting. This is treated by taking Aspirin, Nitrates, or Beta Blockers.
Coronary thrombosis can be a complication associated with drug-eluting stents.
Coronary artery dissection results from a tear in the inner layer of the artery, the tunica intima. This allows blood to penetrate and cause an intramural hematoma in the central layer, the tunica media, and a restriction in the size of the lumen, resulting in reduced blood flow which in turn causes myocardial infarction and can later cause sudden cardiac death.
Whether a cerebral infarction is thrombotic or embolic based, its pathophysiology, or the observed conditions and underlying mechanisms of the disease. In thrombotic ischemic stroke, a thrombus forms and blocks blood flow. A thrombus forms when the endothelium is activated by a variety of signals to result in platelet aggregation in the artery. This clump of platelets interacts with fibrin to form a platelet plug. This platelet plug grows into a thrombus, resulting in a stenotic artery. Thrombotic ischemia can occur in large or small blood vessels. In large vessels, the most common causes of thrombi are atherosclerosis and vasoconstriction. In small vessels, the most common cause is lipohyalinosis. Lipohyalinosis is when high blood pressure and aging causes a build-up of fatty hyaline matter in blood vessels. Atheroma formation can also cause small vessel thrombotic ischemic stroke.
An embolic stroke refers to the blockage of an artery by an embolus, a traveling particle or debris in the arterial bloodstream originating elsewhere. An embolus is most frequently a thrombus, but it can also be a number of other substances including fat (e.g. from bone marrow in a broken bone), air, cancer cells or clumps of bacteria (usually from infectious endocarditis). The embolus may be of cardiac origin due to Atrial fibrillation, Patent foramen ovale or from atherosclerotic plaque of another (or the same) large artery. Cerebral artery gas embolism (e.g. during ascent from a SCUBA dive) is also a possible cause of infarction (Levvett & Millar, 2008)
Coronary arteriovenous fistula between coronary artery and another cardiac chamber, like, the coronary sinus, right atrium, or right ventricle may cause steal syndrome under conditions like myocardial infarction and possible angina or ventricular arrhythmias, if the shunt is large in magnitude.
It can also be associated with new patterns of blood vessel growth.