Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If left untreated, gastroschisis is fatal to the infant; however, in adequate settings the survival rate for treated infants is 90%.
Most risks of gastroschisis are related to decreased bowel function. Sometimes blood flow to the exposed organs is impaired or there may be less than the normal amount of intestine. This may put infants at risk for other dangerous conditions such as necrotizing enterocolitis. Also, because their intestines are exposed, infants with gastroschisis are at increased risk for infection, and must be closely monitored.
As of 2015 the worldwide incidence was about 2 to 5 per 10 000 live births, and this number seemed to be increasing.
As of 2017 the CDC estimates that about 1,871 babies are born each year in the United States with gastroschisis.
Out of all of the causes of birth defects information about a great number is still unknown. As of 2004, the reason that abdominal wall defects occur has yet to be determined or understood. The symptoms that the mother may present that would indicate the development of the defect and unnoticeable . Most cases of abdominal wall defects have been found to be sporadic and have no relationship with the history of the disorder within the family.
The EPA is aware that a common herbicide called Atrazine causes abdominal wall defects as well as other birth defects and cancer. Atrazine has been banned in the EU since 2004, yet is still commonly used in the US despite the evidence of harm. Atrazine affects the drinking water supply, most predominantly in the midwest.
The Center for Disease Control and Prevention did a study on the relationship between Atrazine and abdominal wall defects:
"Gastroschisis and omphalocele are congenital abdominal wall defects (AWD). Atrazine and nitrates are common agricultural fertilizers"
and concluded:
"Indiana has significantly higher rates of AWD [abdominal wall defects] compared with national rates. Increased atrazine levels correlate with increased incidence of AWD."
Abdominal wall defects, specifically the main two types, gastroschisis and omphalocele, are rare, occurring in about one out of every 5000 births. There is no difference in prevalence between boys and girls. Mothers who are below the age of twenty are almost four times as likely to have an offspring that has developed an abdominal wall defect compared to mothers who is in her late twenties and older.
Gastroschisis is a similar birth defect, but in gastroschisis the umbilical cord is not involved and the lesion is usually to the right of midline. Parts of organs may be free in the amniotic fluid, and not enclosed in a membranous (peritoneal) sac. Gastroschisis is less frequently associated with other defects than omphalocele.
Omphaloceles occurs more frequently with increased maternal age.
Other related syndromes are Pentalogy of Cantrell, Beckwith-Wiedemann, and OEIS complex (omphalocele, exstrophy of the cloaca, imperforate anus, spinal defects).
Caused by malrotation of the bowels while returning to the abdomen during development. Some cases of omphalocele are believed to be due to an underlying genetic disorder, such as Edward's syndrome (trisomy 18) or Patau syndrome (trisomy 13).
Beckwith–Wiedemann syndrome is also associated with omphaloceles.
Congenital diaphragmatic hernia has a mortality rate of 40–62%, with outcomes being more favorable in the absence of other congenital abnormalities. Individual rates vary greatly dependent upon multiple factors: size of hernia, organs involved, additional birth defects, and/or genetic problems, amount of lung growth, age and size at birth, type of treatments, timing of treatments, complications (such as infections) and lack of lung function.
An acquired umbilical hernia directly results from increased intra-abdominal pressure caused by obesity, heavy lifting, a long history of coughing, or multiple pregnancies.
Navels with the umbilical tip protruding past the umbilical skin ("outies") are often mistaken for umbilical hernias, which are a completely different shape. Treatment for cosmetic purposes is not necessary, unless there are Incarceration refers to the inability to reduce the hernia back into the abdominal cavity. Prolonged incarceration can lead to tissue ischemia (strangulation) and shock when untreated.
Umbilical hernias are rare. With a study involving Africans, 92% of children had protrusions, 49% of adults, and 90% of pregnant women. However, a much smaller amount actually suffered from hernias: only 23% of children, 8% of adults, and 15% of pregnant women.
When the orifice is small (< 1 or 2 cm), 90% close within 3 years (some sources state 85% of all umbilical hernias, regardless of size), and if these hernias are asymptomatic, reducible, and don't enlarge, no surgery is needed (and in other cases it must be considered).
These hernias should be repaired because of the high risk of strangulation; fortunately, surgery is straightforward, with only larger defects requiring a mesh prosthesis. Varied Spigelian hernia mesh repair techniques have been described, although evidence suggests laparoscopy results in less morbidity and shorter hospitalization compared with open procedures. Mesh-free laparoscopic suture repair is feasible and safe. This novel uncomplicated approach to small Spigelian hernias combines the benefits of laparoscopic localization, reduction, and closure without the morbidity and cost associated with foreign material.
A method for repairing long-gap esophageal atresia using magnets has been developed, that does not require replacing the missing section with grafts of the intestine or other body parts. Using electromagnetic force to attract the upper and lower ends of the esophagus together was first tried in the 1970s by using steel pellets attracted to each other by applying external electromagnets to the patient. In the 2000s a further refinement was developed by Mario Zaritzky's group and others. The newer method uses permanent magnets and a balloon.
1. The magnets are inserted into the upper pouch via the baby's mouth or nose, and the lower via the gastrotomy feeding tube hole (which would have had to be made anyway to feed the baby, therefore not requiring any additional surgery).
2. The distance between the magnets is controlled by a balloon in the upper pouch, between the end of the pouch and the magnet. This also controls the force between the magnets so it is not strong enough to cause damage.
3. After the ends of the esophagus have stretched enough to touch, the upper magnet is replaced by one without a balloon and the stronger magnetic attraction causes the ends to fuse (anastomosis).
In April 2015 Annalise Dapo became the first patient in the United States to have their esophageal atresia corrected using magnets.
It occurs in approximately 1 in 2500 live births.
Congenital esophageal atresia (EA) represents a failure of the esophagus to develop as a continuous passage. Instead, it ends as a blind pouch. Tracheoesophageal fistula (TEF) represents an abnormal opening between the trachea and esophagus. EA and TEF can occur separately or together. EA and TEF are diagnosed in the ICU at birth and treated immediately.
The presence of EA is suspected in an infant with excessive salivation (drooling) and in a newborn with drooling that is frequently accompanied by choking, coughing and sneezing. When fed, these infants swallow normally but begin to cough and struggle as the fluid returns through the nose and mouth. The infant may become cyanotic (turn bluish due to lack of oxygen) and may stop breathing as the overflow of fluid from the blind pouch is aspirated (sucked into) the trachea. The cyanosis is a result of laryngospasm (a protective mechanism that the body has to prevent aspiration into the trachea). Over time respiratory distress will develop.
If any of the above signs/symptoms are noticed, a catheter is gently passed into the esophagus to check for resistance. If resistance is noted, other studies will be done to confirm the diagnosis. A catheter can be inserted and will show up as white on a regular x-ray film to demonstrate the blind pouch ending. Sometimes a small amount of barium (chalk-like liquid) is placed through the mouth to diagnose the problems.
Treatment of EA and TEF is surgery to repair the defect. If EA or TEF is suspected, all oral feedings are stopped and intravenous fluids are started. The infant will be positioned to help drain secretions and decrease the likelihood of aspiration. Babies with EA may sometimes have other problems. Studies will be done to look at the heart, spine and kidneys.
Surgery to repair EA is essential as the baby will not be able to feed and is highly likely to develop pneumonia. Once the baby is in condition for surgery, an incision is made on the side of the chest. The esophagus can usually be sewn together. Following surgery, the baby may be hospitalized for a variable length of time. Care for each infant is individualized.
Its very commonly seen in a newborn with imperforate anus.
A Richter's hernia occurs when the antimesenteric wall of the intestine protrudes through a defect in the abdominal wall. This is discrete from other types of abdominal hernias in that only one intestinal wall protrudes through the defect, such that the lumen of the intestine is incompletely contained in the defect, while the rest remains in the peritoneal cavity. If such a herniation becomes necrotic and is subsequently reduced during hernia repair, perforation and peritonitis may result. A Richter's hernia can result in strangulation and necrosis in the absence of intestinal obstruction. It is a relatively rare but dangerous type of hernia.
Richter's hernia have also been noted in laparoscopic port-sites, usually when the fascia is not closed for ports larger than 10mm. A high index of suspicion is required in the post operative period as this sinister problem can closely mimic more benign complications like port-site haematomas.
Treatment is resection and anastomosis.
Mortality increases with delay in surgical intervention.
Many people are managed through day surgery centers, and are able to return to work within a week or two, while intense activities are prohibited for a longer period. People who have their hernias repaired with mesh often recover within a month, though pain can last longer. Surgical complications include pain that lasts more than three months, surgical site infections, nerve and blood vessel injuries, injury to nearby organs, and hernia recurrence. Pain that lasts more than three months occurs in about 10% of people following hernia repair.
A direct inguinal hernia is less common (~25–30% of inguinal hernias) and usually occurs in men over 40 years of age.
Men have an 8 times higher incidence of inguinal hernia than women.
Risk factors for developing a cystocele are:
- an occupation involving or history of heavy lifting
- pregnancy and childbirth
- chronic lung disease/smoking
- family history of cystocele
- exercising incorrectly
- ethnicity (risk is greater for Hispanic and whites)
- hypoestrogenism
- pelvic floor trauma
- connective tissue disorders
- spina bifida
- hysterectomy
- cancer treatment of pelvic organs* childbirth; correlates to the number of births
- forceps delivery
- age
- chronically high intra-abdominal pressures
- chronic obstructive pulmonary disease
- constipation
- obesity
Connective tissue disorders predispose women to developing cystocele and other pelvic organ prolapse. The tensile strength of the vaginal wall decreases when the structure of the collagen fibers change and become weaker.
About 27% of males and 3% of females develop a groin hernia at some time in their life. In 2013 about 25 million people had a hernia. Inguinal, femoral and abdominal hernias resulted in 32,500 deaths globally in 2013 and 50,500 in 1990.
Occurring at a rate between 1 in 10,000 to 1 in 50,000 with a male-to-female ratio of 2.3-6:1, bladder exstrophy is relatively rare. For those individuals with bladder exstrophy who maintain their ability to reproduce, the risk of bladder exstrophy in their children is approximately 500-fold greater than the general population.
A Spigelian hernia (or lateral ventral hernia) is a hernia through the Spigelian fascia, which is the aponeurotic layer between the rectus abdominis muscle medially, and the semilunar line laterally. These are generally interparietal hernias, meaning that they do not lie below the subcutaneous fat but penetrate between the muscles of the abdominal wall; therefore, there is often no notable swelling.
Spigelian hernias are usually small and therefore risk of strangulation is high. Most occur on the right side. (4th–7th decade of life.) Compared to other types of hernias they are rare.
The occurrence of ectopia cordis is 8 per million births. It is typically classified according to location of the ectopic heart, which includes:
- Cervical
- Thoracic
- Thoracoabdominal
- Abdominal
Thoracic and thoraco-abdominal ectopia cordis constitute the vast majority of known cases.
Emergency exploratory laparotomy with cesarean delivery accompanied by fluid and blood transfusion are indicated for the management of uterine rupture. Depending on the nature of the rupture and the condition of the patient, the uterus may be either repaired or removed (cesarean hysterectomy). Delay in management places both mother and child at significant risk.
The causes of diverticulitis are poorly understood, with approximately 40 percent due to genes and 60 percent due to environmental factors. Conditions that increase the risk of developing diverticulitis include arterial hypertension and immunosuppression. Obesity is another risk factor.
It is a serious medical disorder and the mortality rate can be as high as 30%. The high mortality rate is likely a measure that this syndrome is seen in critically ill patients, rather than this syndrome being in itself lethal, although it can also present in otherwise healthy individuals (especially if the disorder was induced by pharmacologic agents). Drug induced megacolon (i.e. from Clozapine) has been associated with mortality as high as 27.5%.
It is unclear what role dietary fibre plays in diverticulitis. It is often stated that a diet low in fibre is a risk factor; however, the evidence to support this is unclear. There is no evidence to suggest that the avoidance of nuts and seeds prevents the progression of diverticulosis to an acute case of diverticulitis. It appears in fact that a higher intake of nuts and corn could help to avoid diverticulitis in adult males.
The treatment of pentalogy of Cantrell is directed toward the specific symptoms that are apparent in each individual. Surgical intervention for cardiac, diaphragmatic and other associated defects is necessary. Affected infants will require complex medical care and may require surgical intervention. In most cases, pentalogy of Cantrell is fatal without surgical intervention. However, in some cases, the defects are so severe that the individual dies regardless of the medical or surgical interventions received.
The specific treatment strategy will vary from one infant to another based upon various factors, including the size and type of abdominal wall defect, the specific cardiac anomalies that are present, and the particular type of ectopia cordis. Surgical procedures that may be required shortly after birth include repair of an omphalocele. At this time, physicians may also attempt to repair certain other defects including defects of the sternum, diaphragm and the pericardium.
In severe cases, some physicians advocate for a staged repair of the defects associated with pentalogy of Cantrell. The initial operation immediately after birth provides separation of the peritoneal and pericardial cavities, coverage of the midline defect and repair of the omphalocele. After appropriate growth of the thoracic cavity and lungs, the second stage consists of the repair of cardiac defects and return of the heart to the chest. Eventually, usually by age 2 or 3, reconstruction of the lower sternum or epigastrium may be necessary.
Other treatment of pentalogy of Cantrell is symptomatic and supportive.