Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some people may have some mental slowness, but children with this condition often have good social skills. Some males may have problems with fertility.
The RASopathies are developmental syndromes caused by germline mutations (or in rare cases by somatic mosaicism) in genes that alter the Ras subfamily and mitogen-activated protein kinases that control signal transduction, including:
- Capillary malformation-AV malformation syndrome
- Autoimmune lymphoproliferative syndrome
- Cardiofaciocutaneous syndrome
- Hereditary gingival fibromatosis type 1
- Neurofibromatosis type 1
- Noonan syndrome
- Costello syndrome, Noonan-like
- Legius syndrome, Noonan-like
- Noonan syndrome with multiple lentigines, formerly called LEOPARD syndrome, Noonan-like
Males are twice as likely as females to have this characteristic, and it tends to run in families. In its non-symptomatic form, it is more common among Asians and Native Americans than among other populations, and in some families there is a tendency to inherit the condition unilaterally, that is, on one hand only.
The presence of a single transverse palmar crease can be, but is not always, a symptom associated with abnormal medical conditions, such as fetal alcohol syndrome, or with genetic chromosomal abnormalities, including Down Syndrome (chromosome 21), cri du chat syndrome (chromosome 5), Klinefelter syndrome, Wolf-Hirschhorn Syndrome, Noonan syndrome (chromosome 12), Patau syndrome (chromosome 13), IDIC 15/Dup15q (chromosome 15), Edward's syndrome (chromosome 18), and Aarskog-Scott syndrome (X-linked recessive), or autosomal recessive disorder, such as Leaukocyte adhesion deficiency-2 (LAD2). A unilateral single palmar crease was also reported in a case of chromosome 9 mutation causing Nevoid basal cell carcinoma syndrome and Robinow syndrome. It is also sometimes found on the hand of the affected side of patients with Poland Syndrome, and craniosynostosis.
RL syndrome is characterized by renal dysplasia, growth retardation, phocomelia or mesomelia, radiohumeral fusion (joining of radius and humerus), rib abnormalities, anomalies of the external genitalia and potter-like facies among many others.
While only a few adults have been reported with 2q37 microdeletion syndrome, it is predicted that this number will rise as various research studies continue to demonstrate that most with the disorder do not have a shortened life span.
Renal dysplasia-limb defects syndrome (RL syndrome), also known as Ulbright–Hodes syndrome, is a very rare autosomal recessive congenital disorder. It has been described in three infants, all of whom died shortly after birth.
Respiratory complications are often cause of death in early infancy.
Marshall–Smith syndrome is not to be confused with:
- Marshall syndrome (aka.Periodic fever, aphthous stomatitis, pharyngitis and adenitis (PFAPA syndrome, see also: Periodic fever syndrome)
- Sotos (like) syndrome
- Weaver-Smith syndrome (WSS)
Mutations in the FGD1 gene are the only known genetic cause of Aarskog-Scott syndrome. The FGD1 gene provides instructions for making a protein that turns on (activates) another protein called Cdc42, which transmits signals that are important for various aspects of development before and after birth.
Mutations in the FGD1 gene lead to the production of an abnormally functioning protein. These mutations disrupt Cdc42 signaling, leading to the wide variety of abnormalities that occur in people with Aarskog-Scott syndrome.
Only about 20 percent of people with this disorder have identifiable mutations in the FGD1 gene. The cause of Aarskog-Scott syndrome in other affected individuals is unknown.
Nablus mask-like facial syndrome is a microdeletion syndrome triggered by a deletion at chromosome 8 q22.1 that causes a mask-like facial appearance in those affected.
It is characterized by a narrowing of the eyes, tight, glistening facial skin, and a flat, broad nose. Other features of the syndrome include malformed ears, unusual hair patterns on the scalp, bent fingers and toes and joint deformities in the hands and feet, unusual teeth, mild developmental delay, cryptorchidism, and a generally happy disposition. It is a rare genetic disorder by inheritance found in Palestinian people named after Nablus city in the West Bank. It is part of many new genetic disorders of newborns that is increasing exponentially in Arabs in recent years as reported by Centre for Arab Genomic Studies in Dubai.
Albinism–deafness syndrome (also known as "Woolf syndrome" and "Ziprkowski–Margolis syndrome") is a condition characterized by congenital neural deafness and a severe or extreme piebald-like phenotype with extensive areas of hypopigmentation.
A locus at Xq26.3-q27.I has been suggested.
It has been suggested that it is a form of Waardenburg syndrome type II.
Hystrix-like ichthyosis–deafness syndrome (also known as "HID syndrome") is a cutaneous condition characterized by a keratoderma.
Pashayan syndrome also known as Pashayan–Prozansky Syndrome, and blepharo-naso-facial syndrome is a rare syndrome. Facial abnormalities characterise this syndrome as well as malformation of extremities. Specific characteristics would be a bulky, flattened nose, where the face has a mask like appearance and the ears are also malformed.
A subset of Pashayan syndrome has also been described, known as "cerebrofacioarticular syndrome", "Van Maldergem syndrome'" or "Van Maldergem–Wetzburger–Verloes syndrome". Similar symptoms are noted in these cases as in Pashayan syndrome.
Malpuech facial clefting syndrome, also called Malpuech syndrome or Gypsy type facial clefting syndrome, is a rare congenital syndrome. It is characterized by facial clefting (any type of cleft in the bones and tissues of the face, including a cleft lip and palate), a appendage (a "human tail"), growth deficiency, intellectual and developmental disability, and abnormalities of the renal system (kidneys) and the male genitalia. Abnormalities of the heart, and other skeletal malformations may also be present. The syndrome was initially described by Guilliaume Malpuech and associates in 1983. It is thought to be genetically related to Juberg-Hayward syndrome. Malpuech syndrome has also been considered as part of a spectrum of congenital genetic disorders associated with similar facial, urogenital and skeletal anomalies. Termed "3MC syndrome", this proposed spectrum includes Malpuech, Michels and Mingarelli-Carnevale (OSA) syndromes. Mutations in the "COLLEC11" and "MASP1" genes are believed to be a cause of these syndromes. The incidence of Malpuech syndrome is unknown. The pattern of inheritance is autosomal recessive, which means a defective (mutated) gene associated with the syndrome is located on an autosome, and the syndrome occurs when two copies of this defective gene are inherited.
Nasodigitoacoustic syndrome is thought to be caused by a mutation in a gene on the X chromosome. A 2007 study concluded, based on analysis of microsatellite markers (small gene sequences found in common among individuals having the same ethnicity, ancestry or genetic disease) of the family described by Keipert, that this gene was likely located on the long arm of the X chromosome between positions Xq22.2–q28. This is not definitive, however, and no specific gene has been named.
The syndrome is strongly believed to be inherited in an X-linked recessive manner. When a female carries a mutated gene on one of her two copies of the X chromosome, there is a 50% chance of passing the mutation on to her children. Much like her, a daughter inheriting this mutation will be a carrier, but will not herself have the associated disease. However, a son who inherits the mutation will have the disease; this is because males have only one copy of the X chromosome and therefore could only express the disease mutation.
This form of inheritance for Nasodigitoacoustic syndrome is not yet absolute, though, as a girl has been reported with the disorder. It is suggested that further analysis is needed for the inheritance to be formally established.
It is supposed to be caused by defects of genes on chromosome 3 and 18. One form of Seckel syndrome can be caused by mutation in the gene encoding the ataxia telangiectasia and Rad3 related protein () which maps to chromosome 3q22.1-q24. This gene is central in the cell's DNA damage response and repair mechanism.
Types include:
The Seckel syndrome or microcephalic primordial dwarfism (also known as bird-headed dwarfism, Harper's syndrome, Virchow-Seckel dwarfism, and Bird-headed dwarf of Seckel) is an extremely rare congenital nanosomic disorder.
Inheritance is autosomal recessive.
It is characterized by intrauterine growth retardation and postnatal dwarfism with a small head, narrow bird-like face with a beak-like nose, large eyes with down-slanting palpebral fissures , receding mandible and intellectual disability.
A mouse model has been developed. This mouse model is characterized by a severe deficiency of ATR protein. These mice suffer high levels of replicative stress and DNA damage. Adult Seckel mice display accelerated aging. These findings are consistent with the DNA damage theory of aging.
Nasodigitoacoustic syndrome, also called Keipert syndrome, is a rare congenital syndrome first described by J.A. Keipert and colleagues in 1973. The syndrome is characterized by a mishaped nose, broad thumbs and halluces (the big toes), brachydactyly, sensorineural hearing loss, facial features such as hypertelorism (unusually wide-set eyes), and developmental delay. It is believed to be inherited in an X-linked recessive manner, which means a genetic mutation causing the disorder is located on the X chromosome, and while two copies of the mutated gene must be inherited for a female to be born with the disorder, just one copy is sufficient to cause a male to be born with the disorder. Nasodigitoacoustic syndrome is likely caused by a mutated gene located on the X chromosome between positions Xq22.2–q28. The incidence of the syndrome has not been determined, but it is considered to affect less than 200,000 people in the United States, and no greater than 1 per 2,000 in Europe. It is similar to Keutel, Muenke, Rubinstein and Teunissen-Cremers syndrome.
Proteus-like syndrome (PLS) is a condition similar to Proteus syndrome, but with an uncertain cause.
The estimated prevalence of Jacobsen syndrome is believed to be approximately 1 out of every 100,000 births. For reasons unknown females are twice as likely to have Jacobsen Syndrome than males. No preference for any race or ethnicity has been reported so far.
Multiple hamartoma syndrome is a syndrome characterized by more than one hamartoma.
It is sometimes equated with Cowden syndrome. However, MeSH also includes Bannayan–Zonana syndrome (that is, Bannayan–Riley–Ruvalcaba syndrome) and Lhermitte–Duclos disease under this description. Some articles include Cowden syndrome, Bannayan–Riley–Ruvalcaba syndrome, and at least some forms of Proteus syndrome and Proteus-like syndrome under the umbrella term PTEN hamartoma tumor syndromes (PHTS).
Malpuech syndrome has been shown to have physical, or phenotypical similarities with several other genetic disorders. A report by Reardon et al. (2001) of a nine-year-old boy exhibiting facial, caudal and urogenital anomalies consistent with Malpuech syndrome, who also had skeletal malformites indicative of Juberg-Hayward syndrome, suggests that the two disorders may be allelic (caused by different mutations of the same gene).
Along with several other disorders that have similar, or overlapping features and autosomal recessive inheritance, Malpuech syndrome has been considered to belong under the designation "3MC syndrome". Titomanlio et al. (2005) described a three-year-old female known to have Michels syndrome. In their review of the physical similarities between Michels, Malpuech and Mingarelli-Carnevale syndromes—particularly the facial appearance including instances of cleft lip and palate, and ptosis, and a similarity of congenital abdominal and urogenital anomalies—they believed the syndromes may represent a spectrum of genetic disorders rather than three individual disorders. They initially suggested this spectrum could be named 3MC (Michels-Malpuech-Mingarelli-Carnevale) syndrome. This conclusion and the name 3MC syndrome was supported by Leal et al. (2008), who reported a brother and sister with an array of symptoms that overlapped the various syndromes. Further assertion of 3MC syndrome was by Rooryck et al. (2011) in an elaboration of its cause.
Chromosome instability syndromes are a group of inherited conditions associated with chromosomal instability and breakage. They often lead to an increased tendency to develop certain types of malignancies.
The following chromosome instability syndromes are known:
- Ataxia telangiectasia
- Ataxia telangiectasia-like disorder
- Bloom syndrome
- Fanconi anaemia
- Nijmegen breakage syndrome
Somatic mutations in the PIK3CA have been identified as a cause of CLOVES syndrome. PIK3CA is a protein involved in the PI3K-AKT signalling pathway. Mutations in other parts of this pathway cause other overgrowth syndromes including proteus syndrome and hemimegaencephaly.
The condition was first described in 1978 by Pitt and Hopkins in two unrelated patients.
The genetic cause of this disorder was described in 2007. This disorder is due to a haploinsufficiency of the transcription factor 4 (TCF4) gene which is located on the long arm of chromosome 18 (18q21.2) The mutational spectrum appears to be 40% point mutations, 30% small deletions/insertions and 30% deletions. All appear to be "de novo" mutations and to date no risk factors have been identified.
A Pitt–Hopkins like phenotype has been assigned to autosomal recessive mutations of the contactin associated protein like 2 (CNTNAP2) gene on the long arm of chromosome 7 (7q33-q36) and the neurexin 1 alpha (NRXN1) gene on the short arm of chromosome 2 (2p16.3).