Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Some recent research has suggested that a proportion of cases of migraine may be caused by PFO. While the exact mechanism remains unclear, closure of a PFO can reduce symptoms in certain cases. This remains controversial; 20% of the general population has a PFO, which for the most part, is asymptomatic. About 20% of the female population has migraines, and the placebo effect in migraine typically averages around 40%. The high frequency of these facts finding statistically significant relationships between PFO and migraine difficult (i.e., the relationship may just be chance or coincidence). In a large randomized controlled trial, the higher prevalence of PFO in migraine patients was confirmed, but migraine headache cessation was not more prevalent in the group of migraine patients who underwent closure of their PFOs.
A patent foramen ovale (PFO) is a small channel that has some hemodynamic consequence; it is a remnant of the fetal foramen ovale, which normally closes at birth. In medical use, the term "patent" means open or unobstructed. In about 25% of people, the foramen ovale fails to close properly, leaving them with a PFO or at least with what some physicians classify as a "pro-PFO", which is a PFO that is normally closed, but can open under increased blood pressure. On echocardiography, shunting of blood may not be noted except when the patient coughs.
Clinically, PFO is linked to stroke, sleep apnea, migraine with aura, and decompression sickness. No cause is established for a foramen ovale to remain open instead of closing naturally, but heredity and genetics may play a role.
The mechanism by which a PFO may play a role in stroke is called paradoxical embolism. In the case of PFO, a blood clot from the venous circulatory system is able to pass from the right atrium directly into the left atrium via the PFO, rather than being filtered by the lungs, and thereupon into systemic circulation toward the brain. PFO is common in patients with atrial septal aneurysms (ASA) which are also linked to cryptogenic (i.e. of unknown cause) strokes.
PFO is more prevalent in patients with cryptogenic stroke than in patients with a stroke of known cause. While PFO is present in only 25% in the general population, the probability of someone having a PFO increases to about 40 to 50% in patients who have had a cryptogenic stroke. Statistically speaking, this is particularly true for patients who have a stroke before the age of 55.
PFO is not treated in the absence of other symptoms, and no consensus exists on treatment of PFO even in the presence of transient ischemic attack or stroke. Moreover, no "gold standard" treatment option is known. However, treatments for PFO include surgical closure and percutaneous device closure, as well as medical therapies such as anticoagulant therapy, and antiplatelet agents.
Research studies of the efficacy of surgical closure treatments versus medical therapies of PFOs in preventing the recurrence of strokes have been conducted; the results are mixed, although “as-treated” and “per-protocol” analyses were positive for closure devices.
PFO closure devices may be implanted via catheter-based procedures, and using a variety of closure devices.
Debate exists within the neurology and cardiology communities about the role of a PFO in cryptogenic neurologic events such as strokes and transient ischemia attacks without any other potential cause. Some data suggest that PFOs may be involved in the pathogenesis of some migraine headaches. Several clinical trials are currently underway to investigate the role of PFO in these clinical situations.
VSDs are the most common congenital cardiac abnormalities. They are found in 30-60% of all newborns with a congenital heart defect, or about 2-6 per 1000 births. During heart formation, when the heart begins life as a hollow tube, it begins to partition, forming septa. If this does not occur properly it can lead to an opening being left within the ventricular septum. It is debatable whether all those defects are true heart defects, or if some of them are normal phenomena, since most of the trabecular VSDs close spontaneously. Prospective studies give a prevalence of 2-5 per 100 births of trabecular VSDs that close shortly after birth in 80-90% of the cases.
Complete vascular rings represent about 0.5-1% of all congenital cardiovascular malformations. The majority of these are double aortic arches.
There is no known gender preference, i.e. males and females are about equally affected. There is also no known ethnic or geographic disposition.
Associated cardiovascular anomalies are found in 10-15% of patients. These include:
- Atrial septal defect (ASD)
- Ventricular septal defect (VSD)
- Patent ductus arteriosus (PDA)
- Tetralogy of Fallot (ToF)
- Transposition of the great arteries (D-TGA)
Good peer to peer support is available on Facebook. For new and existing parents The group, Transposition of the Great Arteries
For ADULT survivors of D-TGA the Facebook group Mustard or Senning Survivors, gathers several hundred global survivors in their 20s to 50s into a single community. Supporting ADULTS born with TGA that have had a Mustard, Senning, Rastelli or Nikaidoh Heart Procedure *This group is not recommended for Parents of Arterial Switch children.
There is no exact mechanism for Lutembacher's syndrome but instead a combination of disorders as the result of Atrial septal defect (ASD) and/or Mitral valve stenosis.
Congenital VSDs are frequently associated with other congenital conditions, such as Down syndrome.
A VSD can also form a few days after a myocardial infarction (heart attack) due to mechanical tearing of the septal wall, before scar tissue forms, when macrophages start remodeling the dead heart tissue.
The causes of congenital VSD (ventricular septal defect) include the
incomplete looping of the heart during days 24-28 of development. Faults with NKX2.5 gene are usually associated with isolated (non syndromic) ASD in humans when one copy is missing.
It was Bex who introduced in 1980 the possibility of aortic translocation. But Nikaidoh has put the procedure in practice in 1984. It results in an anatomical normal heart, even better than with an ASO, because also the cones are switched instead of only the arteries as with an ASO.
It has as contra-indication coronary anomalies.
Lutembacher is caused indirectly as the result of heart damage or disorders and not something that is necessarily infectious. Lutembacher's syndrome is caused by either birth defects where the heart fails to close all holes in the walls between the atria or from an episode of rheumatic fever where damage is done to the heart valves such as the mitral valve and resultant in an opening of heart wall between atria. With Lutembacher's syndrome, a fetus or infant is usually seen to have a hole in their heart wall (interatrial) separating their right and left atria. Normally during fetal development, blood bypasses the lungs and is oxygenated from the placenta. Blood passes from the umbilical cord and flows into the left atrium through an opening called the foramen ovale; the formaen ovale is a hole between the two atria. Once a baby is born and the lungs begin to fill with air and the blood flow of the heart changes, a tissue flap (somewhat like a trap door) called the septum primium closes the foramen ovale or hole between the two atria and becomes part of the atrial wall. The failure of the hole between the two atria to close after birth leads to a disorder called ASD primium. The most common problems with an opening found in the heart with Lutembacher's syndrome is Ostium Secundum. Ostium Secundum is a hole that is found within the flap of tissue (septum primium) that will eventually close the hole between the two atria after birth. With either type of ASD, ASD will usually cause the blood flow from the right atrium to skip going to the right ventricle and instead flow to the left atrium. If mitral stenosis (the hardening of flap of tissue known as a valve which opens and closes between the left atrium and ventricle to control blood flow) is also present, blood will flow into the right atrium through the hole between the atria wall instead of flowing into the left ventricle and systemic circulation. Eventually this leads to other problems such as the right ventricle failing and a reduced blood flow to the left ventricle.
In addition to the ASD, acquired MS can be present either from an episode of rheumatic fever (the mother has or had rheumatic fever during the pregnancy) or the child being born with the disorder (congenital MS). With the combination of both ASD and MS, the heart can be under severe strain as it tries to move blood throughout the heart and lungs.
Tricuspid atresia is a form of congenital heart disease whereby there is a complete absence of the tricuspid valve. Therefore, there is an absence of right atrioventricular connection. This leads to a hypoplastic (undersized) or absent right ventricle.
This defect is contracted during prenatal development, when the heart does not finish developing. It causes the heart to be unable to properly oxygenate the rest of the blood in the body. Because of this, the body does not have enough oxygen to live, so other defects must occur to maintain blood flow.
Because of the lack of an A-V connection, an atrial septal defect (ASD) must be present to fill the left ventricle with blood. Also, since there is a lack of a right ventricle there must be a way to pump blood into the pulmonary arteries, and this is accomplished by a ventricular septal defect (VSD).
The causes of Tricupsid atresia are unknown.
An atrial septal defect (ASD) and a ventricular septal defect (VSD) must both be present to maintain blood flow-from the right atrium, the blood must flow through the ASD to the left atrium to the left ventricle and through the VSD to the right ventricle to allow access to the lungs
An acyanotic heart defect, also known as non-cyanotic heart defect, is a class of congenital heart defects. In these, blood is shunted (flows) from the left side of the heart to the right side of the heart due to a structural defect (hole) in the interventricular septum. People often retain normal levels of oxyhemoglobin saturation in systemic circulation.
This term is outdated, because a person with an acyanotic heart defect may show cyanosis (turn blue due to insufficient oxygen in the blood).
Left to right shunting heart defects include:
- Ventricular septal defect (VSD) (30% of all congenital heart defects)
- Atrial septal defect (ASD)
- Atrioventricular septal defect (AVSD)
- Patent ductus arteriosus (PDA)
- Previously, Patent ductus arteriosus (PDA) was listed as acyanotic but in actuality it can be cyanotic due to pulmonary hypertension resulting from the high pressure aorta pumping blood into the pulmonary trunk, which then results in damage to the lungs which can then result in pulmonary hypertension as well as shunting of blood back to the right ventricle. This consequently results in less oxygenation of blood due to alveolar damage as well as oxygenated blood shunting back to the right side of the heart, not allowing the oxygenated blood to pass through the pulmonary vein and back to the left atrium.
- (Edit - this is called Eisenmenger's syndrome and can occur with Atrial septal defect and ventricular septal defect as well (actually more common in ASD and VSD) therefore PDA can still be listed as acyanotic as, acutely, it is)
Others:
- levo-Transposition of the great arteries (l-TGA)
Acyanotic heart defects without shunting include:
- Pulmonary stenosis (a narrowing of the pulmonary valve)
- Aortic stenosis
- Coarctation of the aorta
Little is known regarding the exact causes of aortic arch anomalies. However, the association with chromosome 22q11 deletion (CATCH 22) implies that a genetic component is likely in certain cases. Esophageal atresia also occurs in some patients with double aortic arch.
The ostium primum atrial septal defect (also known as an endocardial cushion defect) is a defect in the atrial septum at the level of the tricuspid and mitral valves. This is sometimes known as an endocardial cushion defect because it often involves the endocardial cushion, which is the portion of the heart where the atrial septum meets the ventricular septum and the mitral valve meets the tricuspid valve.
Endocardial cushion defects are associated with abnormalities of the atrioventricular valves (the mitral valve and the tricuspid valve). These include the cleft mitral valve, and the single atrioventricular valve (a single large, deformed valve that flows into both the right ventricle and the left ventricle).
Endocardial cushion defects are the most common congenital heart defect that is associated with Down's syndrome.
A defect in the ostium primum is occasionally classified as an atrial septal defect, but it is more commonly classified as an atrioventricular septal defect
In a normal heart, oxygen-depleted ("deoxygenated") blood is pumped from the right atrium into the right ventricle, then through the pulmonary artery to the lungs where it is oxygenated. The oxygen-rich ("oxygenated") blood then returns, via the pulmonary veins, to the left atrium from which it is pumped into the left ventricle, then through the aorta to the rest of the body, including the heart muscle itself.
With l-TGA, deoxygenated blood is pumped from the right atrium into the morphological left ventricle (which lies on the right side of the heart), then through the pulmonary artery to the lungs. The oxygenated blood then returns, via the pulmonary veins, to the left atrium from which it is pumped into the morphological right ventricle, then through the aorta.
Simple l-TGA has a very good prognosis, with many individuals being asymptomatic and not requiring surgical correction.
In a number of cases, the (technically challenging) "double switch operation" has been successfully performed to restore the normal blood flow through the ventricles.
CXR : decreased pulmonary blood flow and oligemic lung field
ECG : left axis deviation
Holt–Oram syndrome (also called Heart and Hand Syndrome, atrio-digital syndrome, atriodigital dysplasia, cardiac-limb syndrome, heart-hand syndrome type 1, HOS, ventriculo-radial syndrome) is an autosomal dominant disorder that affects bones in the arms and hands (the upper limbs) and may also cause heart problems. The syndrome includes an absent radial bone in the arms, an atrial septal defect, and a first degree heart block. Thalidomide syndrome can produce similar morphology to Holt–Oram syndrome, sufficient to be considered a phenocopy.
All people with this disorder have at least one limb abnormality that affects bones in the wrist (carpal bones). Often, these wrist bone abnormalities can be detected only by X-ray. Affected individuals may have additional bone abnormalities that can include polydactyly, a hypoplastic thumb or a Triphalangeal thumb, partial or complete absence of bones in the forearm, an underdeveloped Humerus, and abnormalities that affect the Clavicle and Scapula. Bone abnormalities may affect each arm differently, and the left side can be affected more than the right side. In some cases, only one arm and/or hand is affected.
About 75 percent of individuals with Holt–Oram syndrome have heart problems. The most common problem is a defect in the muscular wall, or septum, that separates the right and left sides of the heart (atria). Atrial septal defects (ASD) are caused by a hole in the septum between the left and right upper chambers of the heart (atria), and ventricular septal defects (VSD) are caused by a hole in the septum between the left and right lower chambers of the heart (ventricles). Sometimes people with Holt–Oram syndrome have cardiac conduction disease, which is caused by abnormalities in the electrical system that coordinates contractions of the heart chambers. Cardiac conduction disease can lead to problems such as a slow heart rate (bradycardia) or a rapid and ineffective contraction of the heart muscles (fibrillation). Cardiac conduction disease can occur along with other heart defects (such as septal defects) or as the only heart problem in people with Holt–Oram syndrome.
Via a photo shown on a Facebook page, the mother of a child previously diagnosed with this condition recognised the symptoms and reported them to the family involved, resulting in an immediate diagnosis that medical professionals had overlooked in all earlier consultations.
Trigonocephaly can either occur syndromatic or isolated. Trigonocephaly is associated with the following syndromes: Opitz syndrome, Muenke syndrome, Jacobsen syndrome, Baller-Gerold syndrome and Say-Meyer syndrome. The etiology of trigonocephaly is mostly unknown although there are three main theories. Trigonocephaly is probably a multifactorial congenital condition, but due to limited proof of these theories this cannot safely be concluded.
Anterior segment mesenchymal dysgenesis is a failure of the normal development of the tissues of the anterior segment of the eye. It leads to anomalies in the structure of the mature anterior segment, associated with an increased risk of glaucoma and corneal opacity.
Peters' (frequently misspelled Peter's) anomaly is a specific type of mesenchymal anterior segment dysgenesis, in which there is central corneal leukoma, adhesions of the iris and cornea, and abnormalities of the posterior corneal stroma, Descemet's membrane, corneal endothelium, lens, and anterior chamber.
Mosaic trisomy 16, a rare chromosomal disorder, is compatible with life, therefore a baby can be born alive. This happens when only some of the cells in the body contain the extra copy of chromosome 16. Some of the consequences include slow growth before birth.
During prenatal diagnosis the levels of trisomy in fetal-placental tissues can be analyzed. These levels can be predictors of outcomes in mosaic trisomy 16 pregnancies. In a study of prenatal diagnosis cases, there were 66% live births with an average 35.7 weeks gestational age. About 45% of them had malformations. The most common malformations were CSD, ASD, and hypospadias. However, trisomy 16 does not always result in anatomical abnormalities.