Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Autoimmune polyendocrine syndrome type 1 is a condition caused in an autosomal recessive manner. Furthermore, it is due to a defect in AIRE gene (which helps to make a protein that is called the autoimmune regulator) mapped to 21q22.3 chromosome location, hence chromosome 21.
In autoimmune polyendocrine syndrome type 1 mechanism one finds that the maintenance of "immunological tolerance" plays a role. Furthermore, upon looking at the AIRE gene, one finds at least 90 mutations in the gene, in those affected with this condition.
Autoimmune polyendocrine syndrome type 1 mechanism also indicates that affected individuals autoantibodies have considerable reactions with both interferon-omega and interferon alpha.
Autoimmune polyendocrine syndromes (APS) occur when more than one autoimmune disease occurs in endocrine glands. These syndromes are also called Polyendocrine Autoimmune Disorders. In Type 3, autoimmune thyroiditis and another endocrine autoimmune disease are present, but the adrenal cortex is not involved.
Autoimmune polyendocrine syndrome type 2, a form of autoimmune polyendocrine syndrome also known as Schmidt's syndrome, or APS-II, is the most common form of the polyglandular failure syndromes. It is heterogeneous and has not been linked to one gene. Rather, individuals are at a higher risk when they carry a particular human leukocyte antigen (HLA-DQ2, HLA-DQ8 and HLA-DR4). APS-II affects women to a greater degree than men.
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises
In terms of genetics one finds that autoimmune polyendocrine syndrome type 2 has an autosomal dominant(and recessive) inheritance Furthermore, the human leukocyte antigen involved in this condition are HLA-DQ2(DR3 (DQB*0201)) and HLA-DQ8(DR4 (DQB1*0302)), "genetically speaking", which indicates this is a multifactorial disorder, as well
Should "any" affected organs show chronic inflammatory infiltrate(lymphocytes), this would be an indication. Moreover,
autoantibodies reacting to specific antigens is common, in the immune system of an affected individual
Each "type" of this condition has a different cause, in terms of IPEX syndrome is inherited in males by an x-linked recessive process. FOXP3 gene, whose cytogenetic location is Xp11.23, is involved in the mechanism of the IPEX condition.
Risk factors for developing antiphospholipid syndrome include:
- Primary APS
- genetic marker HLA-DR7
- Secondary APS
- SLE or other autoimmune disorders
- Genetic markers: HLA-B8, HLA-DR2, HLA-DR3
- Race: Blacks, Hispanics, Asians, and Native Americans
There is an additional elevated risk of adrenal gland bleeds leading to Waterhouse–Friderichsen syndrome (Neisseria meningitidis caused primary adrenal insufficiency). This will require adrenal steroid replacement treatment for life.
Bare lymphocyte syndrome is a condition caused by mutations in certain genes of the major histocompatibility complex or involved with the processing and presentation of MHC molecules. It is a form of severe combined immunodeficiency.
The bare lymphocyte syndrome, type II (BLS II) is a rare recessive genetic condition in which a group of genes called major histocompatibility complex class II (MHC class II) are not expressed.
The result is that the immune system is severely compromised and cannot effectively fight infection. Clinically, this is similar to severe combined immunodeficiency (SCID), in which lymphocyte precursor cells are improperly formed. As a notable contrast, however, bare lymphocyte syndrome does not result in decreased B- and T-cell counts, as the development of these cells is not impaired.
Diarrhea can be among the associated conditions.
Microcephalic osteodysplastic primordial dwarfism type II (MOPD II) is listed as a "rare disease" by the Office of Rare Diseases (ORD) of the National Institutes of Health (NIH). This means that MOPD, or a subtype of MOPD, affects less than 200,000 people in the US population and a form of dwarfism associated with brain and skeletal abnormalities.
It was characterized in 1982.
It is associated with "PCNT".
The long-term prognosis for APS is determined mainly by recurrent thrombosis, which may occur in up to 29% of patients, sometimes despite antithrombotic therapy.
All patients with symptomatic cryoglobulinemia are advised to avoid, or protect their extremities, from exposure to cold temperatures. Refrigerators, freezers, and air-conditioning represent dangers of such exposure.
Individuals found to have circulating cryoglobulins but no signs or symptoms of cryoglobulinemic diseases should be evaluated for the possibility that their cryoglobulinemia is a transient response to a recent or resolving infection. Those with a history of recent infection that also have a spontaneous and full resolution of their cryoglobulinemia need no further treatment. Individuals without a history of infection and not showing resolution of their cryoglobulinemia need to be further evaluated. Their cryoglobulins should be analyzed for their composition of immunoglobulin type(s) and complement component(s) and examined for the presence of the premalignant and malignant diseases associated with Type I disease as well as the infectious and autoimmune diseases associated with type II and type III disease. A study conducted in Italy on >140 asymptomatic individuals found five cases of hepatitis C-related and one case of hepatitis b-related cryoglobulinemia indicating that a complete clinical examination of asymptomatic individuals with cryoglobulinemia offers a means for finding people with serious but potentially treatable and even curable diseases. Individuals who show no evidence of a disease underlying their cryoglobulinemia and who remain asymptomatic should be followed closely for any changes that may indicate development of cryoglobulinemic disease.
Type II tyrosinemia is caused by a deficiency of the enzyme tyrosine aminotransferase (), encoded by the gene "TAT". Tyrosine aminotransferase is the first in a series of five enzymes that converts tyrosine to smaller molecules, which are excreted by the kidneys or used in reactions that produce energy. This form of the disorder can affect the eyes, skin, and mental development. Symptoms often begin in early childhood and include excessive tearing, abnormal sensitivity to light (photophobia), eye pain and redness, and painful skin lesions on the palms and soles. About half of individuals with type II tyrosinemia are also mentally challenged. Type II tyrosinemia occurs in fewer than 1 in 250,000 individuals.
Tyrosinemia type II (Oculocutaneous tyrosinemia, Richner-Hanhart syndrome) is an autosomal recessive condition with onset between ages 2 and 4 years, when painful circumscribed calluses develop on the pressure points of the palm of the hand and sole of the foot.
The type II and XI collagenopathies are a group of disorders that affect connective tissue, the tissue that supports the body's joints and organs. These disorders are caused by defects in type II or type XI collagen. Collagens are complex molecules that provide structure, strength, and elasticity to connective tissue. Type II and type XI collagen disorders are grouped together because both types of collagen are components of the cartilage found in joints and the spinal column, the inner ear, and the jelly-like substance that fills the eyeball (the vitreous). The type II and XI collagenopathies result in similar clinical features.
Mutations in the "COL11A1", "COL11A2", and "COL2A1" genes cause collagenopathy, types II and XI. These genes carry instructions for the protein strands that make up type II and type XI collagen. All collagen molecules are made of three protein strands (called alpha chains). The alpha chains may be identical or different, depending on the type of collagen. Type II collagen is made by combining three copies of the alpha chain made by the "COL2A1" gene. Type XI collagen, on the other hand, is composed of three different alpha chains: the products of the "COL2A1", "COL11A1", and "COL11A2" genes.
Mutations in these genes interfere with the proper assembly of type II and XI collagens or reduce the amount of these collagens. Defective or reduced numbers of collagen molecules affect the development of bones and other connective tissues, causing the signs and symptoms of the type II and XI collagenopathies.
Outcomes are typically good when treated. Most can expect to live relatively normal lives. Someone with the disease should be observant of symptoms of an "Addison's crisis" while the body is strained, as in rigorous exercise or being sick, the latter often needing emergency treatment with intravenous injections to treat the crisis.
Individuals with Addison's disease have more than a doubled mortality rate. Furthermore, individuals with Addison's disease and diabetes mellitus have an almost 4 time increase in mortality compared to individuals with only diabetes.
The frequency rate of Addison's disease in the human population is sometimes estimated at roughly one in 100,000. Some put the number closer to 40–144 cases per million population (1/25,000–1/7,000). Addison's can affect persons of any age, sex, or ethnicity, but it typically presents in adults between 30 and 50 years of age. Research has shown no significant predispositions based on ethnicity.
Nodular sclerosis (or "NSHL") is a form of Hodgkin's lymphoma that is the most common subtype of HL in developed countries. It affects females slightly more than males and has a median age of onset at ~28 years. It is composed of large tumor nodules with lacunar Reed–Sternberg cell (RS cells) surrounded by fibrotic collagen bands.
The British National Lymphoma Investigation further categorized NSHL based upon Reed-Sternberg cells into "nodular sclerosis type I" (NS I) and "nodular sclerosis type II" (NS II), with the first subtype responding better to treatment.
The overall incidence is ~1/42,000 to 1/50,000 people. Types I and II are the most common types of the syndrome, whereas types III and IV are rare. Type 4 is also known as Waardenburg‐Shah syndrome (association of Waardenburg syndrome with Hirschsprung disease).
Type 4 is rare with only 48 cases reported up to 2002.
About 1 in 30 students in schools for the deaf have Waardenburg syndrome. All races and sexes are affected equally. The highly variable presentation of the syndrome makes it difficult to arrive at precise figures for its prevalence.
NF II is a microdeletion syndrome involving mutations in the NF2 gene located at 22q12.2 of chromosome 22. It is an inheritable disorder with an autosomal dominant mode of transmission. Incidence of the condition is about 1 in 60,000. There is a broad clinical spectrum known, but all patients checked have been found to have some mutation of the same gene on chromosome 22. Through statistics, it is suspected that one-half of cases are inherited, and one-half are the result of new, "de novo" mutations.
Heterozygous protein C deficiency occurs in 0.14–0.50% of the general population. Based on an estimated carrier rate of 0.2%, a homozygous or compound heterozygous protein C deficiency incidence of 1 per 4 million births could be predicted, although far fewer living patients have been identified. This low prevalence of patients with severe genetic protein C deficiency may be explained by excessive fetal demise, early postnatal deaths before diagnosis, heterogeneity in the cause of low concentrations of protein C among healthy individuals and under-reporting.
The incidence of protein C deficiency in individuals who present with clinical symptoms has been reported to be estimated at 1 in 20,000.
In type II hypersensitivity (also tissue-specific, or cytotoxic hypersensitivity) the antibodies produced by the immune response bind to antigens on the patient's own cell surfaces. The antigens recognized in this way may either be intrinsic ("self" antigen, innately part of the patient's cells) or extrinsic (adsorbed onto the cells during exposure to some foreign antigen, possibly as part of infection with a pathogen). These cells are recognized by macrophages or dendritic cells, which act as antigen-presenting cells. This causes a B cell response, wherein antibodies are produced against the foreign antigen.
An example of type II hypersensitivity is the ABO blood incompatibility where the red blood cells have different antigens, causing them to be recognized as different; B cell proliferation will take place and antibodies to the foreign blood type are produced. IgG and IgM antibodies bind to these antigens to form complexes that activate the classical pathway of complement activation to eliminate cells presenting foreign antigens. That is, mediators of acute inflammation are generated at the site and membrane attack complexes cause cell lysis and death. The reaction takes hours to a day.
Type II reactions can affect healthy cells. Examples include red blood cells in autoimmune hemolytic anemia and acetylcholine receptors in myasthenia gravis.
Another example of type II hypersensitivity reaction is Goodpasture's syndrome where the basement membrane (containing collagen type IV) in the lung and kidney is attacked by one's own antibodies.
Another form of type II hypersensitivity is called antibody-dependent cell-mediated cytotoxicity (ADCC). Here, cells exhibiting the foreign antigen are tagged with antibodies (IgG or IgM). These tagged cells are then recognised by natural killer cells (NK) and macrophages (recognised via IgG bound (via the Fc region) to the effector cell surface receptor, CD16 (FcγRIII)), which in turn kill these tagged cells.