Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of glaucoma in iridogoniodysgenesis is primarily surgical.
It is listed as a "rare disease" by the Office of Rare Diseases (ORD). This means that Iridogoniodysgenesis, dominant type, or a subtype of Iridogoniodysgenesis, dominant type, affects less than 200,000 people in the US population.
Iridogoniodysgenesis, dominant type (type 1, IRID1) refers to a spectrum of diseases characterized by malformations of the irido-corneal angle of the anterior chamber of the eye. Iridogoniodysgenesis is the result of abnormal migration or terminal induction of neural crest cells. These cells lead to formation of most of the anterior segment structures of the eye (corneal stroma & endothelium, iris stroma, trabeculum).
The cause of this condition is not presently known. It appears to be inherited in an autosomal dominant fashion.
The prevalence rate has been estimated to be less than 1/1,000,000 worldwide. However, it is much more common in the French-Canadian population of the Saguenay and Lac-St-Jean regions of Quebec, Canada, where it has a frequency of about 1 in 2100 in live births, and a carrier rate of 1 in 23.
The prognosis is poor. Patients are usually wheelchair bound by their 20s and die by their 30s.
Acorea, microphthalmia and cataract syndrome is a rare genetically inherited condition.
Axenfeld syndrome (also known as Axenfeld-Rieger syndrome or Hagedoom syndrome) is a rare autosomal dominant disorder, which affects the development of the teeth, eyes, and abdominal region.
The molecular genetics of Axenfeld syndrome are poorly understood, but centers on three genes identified by cloning of chromosomal breakpoints from patients.
This disorder is inheritable as an autosomal dominant trait, which means the defective gene is located on an autosome, and only one copy of the gene is sufficient to cause the disorder when inherited from a parent who has the disorder. As shown in the diagram, this gives a 50/50 chance of offspring inheriting the condition from an affected parent.
Bamforth–Lazarus syndrome is a genetic condition that results in thyroid dysgenesis. It is due to recessive mutations in forkhead/winged-helix domain transcription factor ("FKLH15" or "TTF2").
It is associated with "FOXE1".
The cause of this condition is not known. A genetic basis is suspected. More than one case have been reported in three families.
Researchers are also investigating the genetic similarities between Dubowitz Syndrome and Smith-Lemli-Opitz syndrome (SLOS). Patients with SLOS and Dubowitz syndromes experience many of the same abnormalities, and the two disorders are hypothesized to be linked. A characteristic of SLOS is a low cholesterol level and a high 7-dehydrocholesterol level. Cholesterol is essential for several key functions of the body, including cell membrane structure, embryogenesis, and steroid and sex hormone synthesis. Impaired cholesterol biosynthesis or transport possibly accounts for most of the symptoms of both SLOS and Dubowitz. Although only a few patients with Dubowitz Syndrome have been identified with altered cholesterol levels, researchers are exploring whether Dubowitz Syndrome, like SLOS, carries a link to a defect in the cholesterol biosynthetic pathway.
The exact biochemical pathology of the disease is still under research because of the low prevalence of the disease and the wide array of symptoms associated with it. Several studies have focused on different aspects of the disease to try to find its exact cause and expression. One study examined the specific oral features in one patient. Another found abnormalities in the brain, such as corpus callosum dysgenesis, an underdeveloped anterior pituitary and a brain stalk with an ectopic neurohypophysis.
Although the exact pathology of Dubowitz syndrome is not known yet, it is heritable and classified as an autosomal recessive disease. Furthermore, there is an occasional parental consanguinity. Several cases point to Dubowitz syndrome occurring in monozygotic twins, siblings, and cousins. There is considerable phenotypic variability between cases, especially in regards to intelligence. Although substantial evidence points to the genetic basis of this disorder, the phenotypic similarity is found in fetal alcohol syndrome. Further studies need to be done to determine whether this environmental agent effects the expression of the genotype. Breakdown of chromosomes is known to occur.
A 1994 review of 150 cases reported in the literature found that 38% had died with a mean age of death of 2 years. 32% were still alive at the time of the report with a mean age of 4.65. No data were available for the remainder. The author described living with DDS as "walking a multidimensional tight rope".
Renal-hepatic-pancreatic dysplasia is an autosomal recessive congenital disorder characterized by pancreatic fibrosis, renal dysplasia and hepatic dysgenesis. It is usually fatal soon after birth.
An association with NPHP3 has been described.
It was characterized in 1959.
The cause of DDS is most commonly (96% of patients) an abnormality in the WT1 gene (Wilms tumor suppressor gene). These abnormalities include changes in certain exons (9 and 8) and mutations in some alleles of the WT1 gene. Genetically, the syndrome is due to mutations in the Wilms tumor suppressor gene, WT1, which is on chromosome 11 (11p13). These mutations are usually found in exons 8 or 9, but at least one has been reported in exon 4.
Cerebral dysgenesis–neuropathy–ichthyosis–keratoderma syndrome (also known as "CEDNIK syndrome") is a cutaneous condition caused by mutation in the SNAP29 gene.
Malouf syndrome (also known as "congestive cardiomyopathy-hypergonadotropic hypogonadism syndrome") is a congenital disorder that causes one or more of the following symptoms: mental retardation, ovarian dysgenesis, congestive cardiomyopathy, broad nasal base, blepharoptosis, and bone abnormalities, and occasionally marfanoid habitus (tall stature with long and thin limbs, little subcutaneous fat, arachnodactyly, joint hyperextension, narrow face, small chin, large testes, and hypotonia).
This disease is named after J. Malouf, who performed a case study on a family suffering from this disease in 1985.
Facial femoral syndrome is a rare congenital disorder. It is also known as femoral dysgenesis, bilateral femoral dysgenesis, bilateral-Robin anomaly and femoral hypoplasia-unusual facies syndrome. The main features of this disorder are underdeveloped thigh bones (femurs) and unusual facial features.
The effect of the disorder is female to male sex reversal. Patients also exhibit renal, adrenal, and lung dysgenesis. One indicator is low levels of unconjugated estriol in maternal serum, because this denotes adrenal hypoplasia.
Aphalangy, hemivertebrae and urogenital-intestinal dysgenesis is an extremely rare syndrome, described only in three siblings. It associates hypoplasia or aplasia of phalanges of hands and feet, hemivertebrae and various urogenital and/or intestinal abnormalities. Intrafamilial variability is important as one sister had lethal abnormalities (Potter sequence and pulmonary hypoplasia), while her affected brother was in good health with normal psychomotor development at 6 months of age. Prognosis seems to depend mainly on the severity of visceral malformations. Etiology and inheritance remain unknown.
Anterior segment mesenchymal dysgenesis is a failure of the normal development of the tissues of the anterior segment of the eye. It leads to anomalies in the structure of the mature anterior segment, associated with an increased risk of glaucoma and corneal opacity.
Peters' (frequently misspelled Peter's) anomaly is a specific type of mesenchymal anterior segment dysgenesis, in which there is central corneal leukoma, adhesions of the iris and cornea, and abnormalities of the posterior corneal stroma, Descemet's membrane, corneal endothelium, lens, and anterior chamber.
Tooth and nail syndrome (also known as "Hypodontia with nail dysgenesis," and "Witkop syndrome") is a rare disorder, first described in 1965, characterized by nails that are thin, small, and friable, and which may show koilonychia at birth.
It is associated with "MSX1".
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
Hirschsprung's disease can also present as part of a multisystem disorder, such as Down syndrome, Bardet–Biedl syndrome, Waardenburg–Shah syndrome, Mowat–Wilson syndrome, Goldberg–Shprintzen megacolon syndrome, cartilage–hair hypoplasia, multiple endocrine neoplasia type 2, Smith-Lemli-Opitz syndrome, and congenital central hypoventilation syndrome.
- Bardet–Biedl syndrome
- Cartilage–hair hypoplasia
- Congenital central hypoventilation syndrome
- MEN2
- Mowat–Wilson syndrome
- Smith–Lemli–Opitz syndrome
- Trisomy 21 (Down syndrome)
- Waardenburg syndrome
The disorder is linked a mutation in the "Wnt4" gene. There is an intraexonic homozygous C to T transition at cDNA position 341. This leads to an alanine to valine residue substitution at amino acid position 114, a location highly conserved in all organisms, including zebrafish and Drosophila. A subsequent influence on mRNA stability leads to protein loss of function. WNT4 usually represses male sex development.