Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Treatment of glaucoma in iridogoniodysgenesis is primarily surgical.
It is listed as a "rare disease" by the Office of Rare Diseases (ORD). This means that Iridogoniodysgenesis, dominant type, or a subtype of Iridogoniodysgenesis, dominant type, affects less than 200,000 people in the US population.
Anterior segment mesenchymal dysgenesis is a failure of the normal development of the tissues of the anterior segment of the eye. It leads to anomalies in the structure of the mature anterior segment, associated with an increased risk of glaucoma and corneal opacity.
Peters' (frequently misspelled Peter's) anomaly is a specific type of mesenchymal anterior segment dysgenesis, in which there is central corneal leukoma, adhesions of the iris and cornea, and abnormalities of the posterior corneal stroma, Descemet's membrane, corneal endothelium, lens, and anterior chamber.
Axenfeld syndrome (also known as Axenfeld-Rieger syndrome or Hagedoom syndrome) is a rare autosomal dominant disorder, which affects the development of the teeth, eyes, and abdominal region.
Iridogoniodysgenesis, dominant type (type 1, IRID1) refers to a spectrum of diseases characterized by malformations of the irido-corneal angle of the anterior chamber of the eye. Iridogoniodysgenesis is the result of abnormal migration or terminal induction of neural crest cells. These cells lead to formation of most of the anterior segment structures of the eye (corneal stroma & endothelium, iris stroma, trabeculum).
Several gene mutations have been identified underlying these anomalies with the majority of ASD genes encoding transcriptional regulators. In this review, the role of the ASD genes, PITX2 and FOXC1, is considered in relation to the embryology of the anterior segment, the biochemical function of these proteins, and their role in development and disease aetiology. The emerging view is that these genes act in concert to specify a population of mesenchymal progenitor cells, mainly of neural crest origin, as they migrate anteriorly around the embryonic optic cup. These same genes then regulate mesenchymal cell differentiation to give rise to distinct anterior segment tissues. Development appears critically sensitive to gene dosage, and variation in the normal level of transcription factor activity causes a range of anterior segment anomalies. Interplay between PITX2 and FOXC1 in the development of different anterior segment tissues may partly explain the phenotypic variability and the genetic heterogeneity characteristic of ASD. In the most recent research, the PAX6 gene has been implicated in Peters' Anomaly
The molecular genetics of Axenfeld syndrome are poorly understood, but centers on three genes identified by cloning of chromosomal breakpoints from patients.
This disorder is inheritable as an autosomal dominant trait, which means the defective gene is located on an autosome, and only one copy of the gene is sufficient to cause the disorder when inherited from a parent who has the disorder. As shown in the diagram, this gives a 50/50 chance of offspring inheriting the condition from an affected parent.
The cause of this condition is not presently known. It appears to be inherited in an autosomal dominant fashion.
Acorea, microphthalmia and cataract syndrome is a rare genetically inherited condition.
The prevalence of Klippel–Feil syndrome is unknown due to the fact that there was no study done to determine the true prevalence.
Although the actual occurrence for the KFS syndrome is unknown, it is estimated to occur 1 in 40,000 to 42,000 newborns worldwide. In addition, females seem to be affected slightly more often than males.
Aphalangy, hemivertebrae and urogenital-intestinal dysgenesis is an extremely rare syndrome, described only in three siblings. It associates hypoplasia or aplasia of phalanges of hands and feet, hemivertebrae and various urogenital and/or intestinal abnormalities. Intrafamilial variability is important as one sister had lethal abnormalities (Potter sequence and pulmonary hypoplasia), while her affected brother was in good health with normal psychomotor development at 6 months of age. Prognosis seems to depend mainly on the severity of visceral malformations. Etiology and inheritance remain unknown.
Congenital cystic eye (also known as "CCE" or "cystic eyeball") is an extremely rare ocular malformation where the eye fails to develop correctly "in utero" and is replaced by benign, fluid-filled tissue. Its incidence is unknown, due to the very small number of cases reported. An audit by Duke-Elder of the medical literature from 1880 to 1963 discovered only 28 cases. The term was coined in 1937 by the renowned ophthalmologist Ida Mann.
Embryologically, the defect is thought to occur around day 35 of gestation, when the vesicle fails to invaginate. Dysgenesis of the vesicle later in development may result in coloboma, a separate and less severe malformation of the ocular structures.
CCE is almost always unilateral, but at least 2 cases of bilateral involvement have been described. Patients may also present with skin appendages attached to the skin surrounding the eyes. Association with intracranial anomalies has been reported.
Treatment of CCE is usually by enucleation, followed by insertion of an ocular implant and prosthesis.
Coloboma of optic nerve, is a rare defect of the optic nerve that causes moderate to severe visual field defects.
Coloboma of the optic nerve is a congenital anomaly of the optic disc in which there is a defect of the inferior aspect of the optic nerve. The issue stems from incomplete closure of the embryonic fissure while in utero. A varying amount of glial tissue typically fills the defect, manifests as a white mass.
The cause of this condition is not known. A genetic basis is suspected. More than one case have been reported in three families.
Bamforth–Lazarus syndrome is a genetic condition that results in thyroid dysgenesis. It is due to recessive mutations in forkhead/winged-helix domain transcription factor ("FKLH15" or "TTF2").
It is associated with "FOXE1".
A 1994 review of 150 cases reported in the literature found that 38% had died with a mean age of death of 2 years. 32% were still alive at the time of the report with a mean age of 4.65. No data were available for the remainder. The author described living with DDS as "walking a multidimensional tight rope".
Although the exact pathology of Dubowitz syndrome is not known yet, it is heritable and classified as an autosomal recessive disease. Furthermore, there is an occasional parental consanguinity. Several cases point to Dubowitz syndrome occurring in monozygotic twins, siblings, and cousins. There is considerable phenotypic variability between cases, especially in regards to intelligence. Although substantial evidence points to the genetic basis of this disorder, the phenotypic similarity is found in fetal alcohol syndrome. Further studies need to be done to determine whether this environmental agent effects the expression of the genotype. Breakdown of chromosomes is known to occur.
Researchers are also investigating the genetic similarities between Dubowitz Syndrome and Smith-Lemli-Opitz syndrome (SLOS). Patients with SLOS and Dubowitz syndromes experience many of the same abnormalities, and the two disorders are hypothesized to be linked. A characteristic of SLOS is a low cholesterol level and a high 7-dehydrocholesterol level. Cholesterol is essential for several key functions of the body, including cell membrane structure, embryogenesis, and steroid and sex hormone synthesis. Impaired cholesterol biosynthesis or transport possibly accounts for most of the symptoms of both SLOS and Dubowitz. Although only a few patients with Dubowitz Syndrome have been identified with altered cholesterol levels, researchers are exploring whether Dubowitz Syndrome, like SLOS, carries a link to a defect in the cholesterol biosynthetic pathway.
The exact biochemical pathology of the disease is still under research because of the low prevalence of the disease and the wide array of symptoms associated with it. Several studies have focused on different aspects of the disease to try to find its exact cause and expression. One study examined the specific oral features in one patient. Another found abnormalities in the brain, such as corpus callosum dysgenesis, an underdeveloped anterior pituitary and a brain stalk with an ectopic neurohypophysis.
The cause of DDS is most commonly (96% of patients) an abnormality in the WT1 gene (Wilms tumor suppressor gene). These abnormalities include changes in certain exons (9 and 8) and mutations in some alleles of the WT1 gene. Genetically, the syndrome is due to mutations in the Wilms tumor suppressor gene, WT1, which is on chromosome 11 (11p13). These mutations are usually found in exons 8 or 9, but at least one has been reported in exon 4.
The heterogeneity of the Klippel–Feil syndrome has made it difficult to outline the diagnosis as well as the prognosis classes for this disease. Because of this, it has complicated the exact explanation of the genetic cause of the syndrome.
The prognosis for most individuals with KFS is good if the disorder is treated early on and appropriately. Activities that can injure the neck should be avoided, as it may contribute to further damage. Other diseases associated with the syndrome can be fatal if not treated, or if found too late to be treatable.
Facial femoral syndrome is a rare congenital disorder. It is also known as femoral dysgenesis, bilateral femoral dysgenesis, bilateral-Robin anomaly and femoral hypoplasia-unusual facies syndrome. The main features of this disorder are underdeveloped thigh bones (femurs) and unusual facial features.
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
In a normal situation, all the cells in an individual will have 46 chromosomes with one being an X and one a Y or with two Xs. However, sometimes during this complicated early copying process (DNA replication and cell division), one chromosome can be lost. In 45,X/46,XY, most or all of the Y chromosome is lost in one of the newly created cells. All the cells then made from this cell will lack the Y chromosome. All the cells created from the cells that have not lost the Y chromosome will be XY. The 46,XY cells will continue to multiply at the same time as the 45,X cells multiply. The embryo, then the fetus and then the baby will have what is called a 45,X/46,XY constitution. This is called a
mosaic karyotype because, like tiles in mosaic floors or walls, there is more than one type of cell.
There are many chromosomal variations that cause the 45,X/46,XY karyotype, including malformation (isodicentricism) of the Y chromosomes, deletions of Y chromosome or translocations of Y chromosome segments. These rearrangements of the Y chromosome can lead to partial expression of the SRY gene which may lead to abnormal genitals and testosterone levels.
Vision in the affected eye is impaired, the degree of which depends on the size of the defect, and typically affects the visual field more than visual acuity. Additionally, there is an increased risk of serous retinal detachment, manifesting in 1/3 of patients. If retinal detachment does occur, it is usually not correctable and all sight is lost in the affected area of the eye, which may or may not involve the macula.
Renal-hepatic-pancreatic dysplasia is an autosomal recessive congenital disorder characterized by pancreatic fibrosis, renal dysplasia and hepatic dysgenesis. It is usually fatal soon after birth.
An association with NPHP3 has been described.
It was characterized in 1959.
The prevalence rate has been estimated to be less than 1/1,000,000 worldwide. However, it is much more common in the French-Canadian population of the Saguenay and Lac-St-Jean regions of Quebec, Canada, where it has a frequency of about 1 in 2100 in live births, and a carrier rate of 1 in 23.