Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
The diagnosis of PPS has been made in several ethnic groups, including Caucasian, Japanese, and sub-Saharan African. Males and females are equally likely to suffer from the syndrome. Since the disorder is very rare, its incidence rate is difficult to estimate, but is less than 1 in 10,000.
Griscelli syndrome is a rare autosomal recessive disorder characterized by albinism (hypopigmentation) with immunodeficiency, that usually causes death by early childhood.
Tricho-hepato-enteric syndrome is estimated to affect 1 in 300,000 to 400,000 live births in Western Europe. This syndrome was first reported in 1982 with a report on 2 siblings, and as of 2008 there were around 25 published cases in medical journals. There seem to be no racial differences in its occurrence. It might be more common, as many genetic diseases, in areas with high levels of consanguinity.
If the Hirschsprung's disease is treated in time, ABCD sufferers live otherwise healthy lives. If it is not found soon enough, death often occurs in infancy. For those suffering hearing loss, it is generally regressive and the damage to hearing increases over time. Digestive problems from the colostomy and reattachment may exist, but most cases can be treated with laxatives. The only other debilitating symptom is hearing loss, which is usually degenerative and can only be treated with surgery or hearing aids.
Bohring–Opitz syndrome (BOS) is a medical syndrome caused by a mutation in the ASXL1 gene. It is diagnosed by genetic testing and is characterised by characteristic craniofacial appearance, fixed contractures of the upper limbs, abnormal posture, feeding difficulties, intellectual disability, small size at birth, and failure to thrive. Some of these features are shared with other genetic syndromes.
Genetically, de novo truncating mutations in ASXL1 have been shown to account for approximately 50% of Bohring–Opitz syndrome cases.
The syndrome is extremely rare, with fewer than 80 known cases worldwide. The leading cause of death is respiratory infections. Children with BOS can have feeding difficulties, recurring respiratory infections, sleep apnea, developmental delay, failure to thrive, abnormal hair density and length, Wilm’s Tumors, brain abnormalities, silent aspiration, and other issues.
Costello and Noonan syndrome are similar to CFC and their phenotypic overlap may be due to the biochemical relationship of the genes mutated in each syndrome to each other. Genes that are mutated in all three of these syndromes encode proteins that function in the MAP kinase pathway.
- Mutations that cause CFC are found in the KRAS, BRAF, MEK1 and MEK2 genes.
- Costello syndrome is caused by mutations in HRAS.
- Mutations that cause Noonan syndrome have been found in PTPN11 and SOS1.
The relative severity of CFC when compared to Noonan syndrome may reflect the position in the biochemical pathway each gene occupies.
- Shp2, the protein product of the PTPN11, appears to regulate the MAP kinase pathway at or above the level of SOS1.
- SOS1 in turn regulates the activities of RAS, RAF, MEK, ERK and p90RSK.
- SOS1 has been demonstrated to be a target of negative feedback by ERK and p90RSK.
Thus, any activating mutation downstream of SOS1 may be subject to less regulation that may mitigate the consequence of such mutations giving rise to the phenotypic differences seen between these syndromes.
Sabinas brittle hair syndrome, also called Sabinas syndrome or brittle hair-mental deficit syndrome, is an autosomal recessive congenital disorder affecting the integumentary system.
Until recently, the medical literature did not indicate a connection among many genetic disorders, both genetic syndromes and genetic diseases, that are now being found to be related. As a result of new genetic research, some of these are, in fact, highly related in their root cause despite the widely varying set of medical symptoms that are clinically visible in the disorders. Ellis–van Creveld syndrome is one such disease, part of an emerging class of diseases called ciliopathies. The underlying cause may be a dysfunctional molecular mechanism in the primary cilia structures of the cell, organelles which are present in many cellular types throughout the human body. The cilia defects adversely affect "numerous critical developmental signaling pathways" essential to cellular development and thus offer a plausible hypothesis for the often multi-symptom nature of a large set of syndromes and diseases. Known ciliopathies include primary ciliary dyskinesia, Bardet–Biedl syndrome, polycystic kidney and liver disease, nephronophthisis, Alstrom syndrome, Meckel–Gruber syndrome and some forms of retinal degeneration.
Weyers acrofacial dysostosis is due to another mutation in the EVC gene and hence is allelic with Ellis–van Creveld syndrome.
Sabinas brittle hair syndrome is inherited as an autosomal recessive genetic trait.
In a study by Howell et al. patients were located and studied by means of complete histories and physical examinations, analyses of serum trace metals, ceruloplasmin concentration, urine and serum amino acids, and routine metabolic urine screens. In addition, serum and urine luteinizing hormone (LH) and follicle-stimulating hormone (FSH) values were determined, and were interpreted in conjunction with total plasma estrogen, estradiol, and testosterone levels. Close examination demonstrated the scalp hairs were very brittle, coarse, wiry in texture, and broke off quite easily with mechanical trauma such as combing and brushing. Some hairs could be visualized in their follicles, which were broken off at the skin line. Most patients had accompanying hyperkeratosis (thickening of the skin) of moderate degree on exposed surfaces. Maxillary hypoplasia (midfacial retrusion) was significant in many patients. The brittle, short hair, reduced eyelashes, crowded teeth, and dull appearance created a characteristic facial appearance. Post-pubertal patients had development of secondary sexual characteristics consistent with their age, except for sparse pubic escutcheons. All cases studied demonstrated some degree of mental deficiency; I.Q.'s ranged between 50–60. A deficiency in eye–hand coordination was also noted.
This includes Chediak-Higashi syndrome and Elejalde syndrome (neuroectodermal melanolysosomal disease).
Trichothiodystrophy (TTD) is an autosomal recessive inherited disorder characterised by brittle hair and intellectual impairment. The word breaks down into "tricho" – "hair", "thio" – "sulphur", and "dystrophy" – "wasting away" or literally "bad nourishment". TTD is associated with a range of symptoms connected with organs of the ectoderm and neuroectoderm. TTD may be subclassified into four syndromes: Approximately half of all patients with trichothiodystrophy have photosensitivity, which divides the classification into syndromes with or without photosensitivity; BIDS and PBIDS, and IBIDS and PIBIDS. Modern covering usage is TTD-P (photosensitive), and TTD.
Ellis–van Creveld syndrome often is the result of founder effects in isolated human populations, such as the Amish and some small island inhabitants. Although relatively rare, this disorder does occur with higher incidence within founder-effect populations due to lack of genetic variability. Observation of the inheritance pattern has illustrated that the disease is autosomal recessive, meaning that both parents have to carry the gene in order for an individual to be affected by the disorder.
Ellis–van Creveld syndrome is caused by a mutation in the "EVC" gene, as well as by a mutation in a nonhomologous gene, "EVC2", located close to the EVC gene in a head-to-head configuration. The gene was identified by positional cloning. The EVC gene maps to the chromosome 4 short arm (4p16). The function of a healthy EVC gene is not well understood at this time.
Griscelli syndrome is a disorder of melanosome transport, and divided into several types:
Individuals with the disorder usually have distinctive malformations of the craniofacial area including an unusually large head (macrocephaly), prominent forehead, and abnormal narrowing of both sides of the forehead (bitemporal constriction); The nose can be upturned and short with a low nasal bridge; and large ears that are abnormally rotated toward the back of the head. In many cases, affected individuals also have downward slanting eyelid folds, widely spaced eyes, drooping of the upper eyelids, inward deviation of the eyes, and other eye abnormalities including absent eyebrows and eyelashes.
ABCD syndrome is the acronym for albinism, black lock, cell migration disorder of the neurocytes of the gut, and sensorineural deafness. It has been found to be caused by mutation in the endothelin B receptor gene (EDNRB).
Van der Woude syndrome (VDWS) and popliteal pterygium syndrome (PPS) are allelic variants of the same condition; that is, they are caused by different mutations of the same gene. PPS includes all the features of VDWS, plus popliteal pterygium, syngnathia, distinct toe/nail abnormality, syndactyly, and genito-urinary malformations.
Features of TTD can include photosensitivity, icthyosis, brittle hair and nails, intellectual impairment, decreased fertility and short stature. The acronyms PIBIDS, IBIDS, BIDS and PBIDS give the initials of the words involved. BIDS syndrome, also called Amish brittle hair brain syndrome and hair-brain syndrome, is an autosomal recessive inherited disease. It is nonphotosensitive. BIDS is characterized by brittle hair, intellectual impairment, decreased fertility, and short stature. There is a photosensitive syndrome, PBIDS.
BIDS is associated with the gene MPLKIP (TTDN1).
IBIDS syndrome, following the acronym from ichthyosis, brittle hair and nails, intellectual impairment and short stature, is the Tay syndrome or sulfur-deficient brittle hair syndrome, first described by Tay in 1971. (Chong Hai Tay was the Singaporean doctor who was the first doctor in South East Asia to have a disease named after him). Tay syndrome should not be confused with the Tay-Sachs disease. It is an autosomal recessive congenital disease. In some cases, it can be diagnosed prenatally. IBIDS syndrome is nonphotosensitive.
The photosensitive form is referred to as PIBIDS, and is associated with ERCC2 and ERCC3.
IP is inherited in an X-linked dominant manner. IP is lethal in most, but not all, males. A female with IP may have inherited the IKBKG mutation from either parent or have a new gene mutation. Parents may either be clinically affected or have germline mosaicism. Affected women have a 50% risk of transmitting the mutant IKBKG allele at conception; however, most affected male conceptuses miscarry. Thus, the effective ratio for liveborn children from a mother carrying the mutation is 33% unaffected females, 33% affected females, and 33% unaffected males. Genetic counseling, prenatal testing, and preimplantation genetic diagnosis is available.
In females, the cells expressing the mutated IKBKG gene due to lyonization selectively die around the time of birth so the X-inactivation is extremely skewed.
IP is caused by mutations in a gene called NEMO (NF-κB essential modulator).
Treatment of manifestations: special hair care products to help manage dry and sparse hair; wigs; artificial nails; emollients to relieve palmoplantar hyperkeratosis.
Individuals affected by certain ED syndromes cannot perspire. Their sweat glands may function abnormally or may not have developed at all because of inactive proteins in the sweat glands. Without normal sweat production, the body cannot regulate temperature properly. Therefore, overheating is a common problem, especially during hot weather. Access to cool environments is important.
One European study reported a rate of 1 in 254,000; a Japanese study reported a rate of 1 in 357,143. No correlation with other inherited characteristics, or with ethnic origin, is known.
Though the children affected with CLSD will have problems throughout life, the treatment for this disease thus far is symptomatic. However, prognosis is good; at the time of the most recently published articles, identified children were still alive at over 4 years of age.
Mutant proteins still maintain some residual activity, allowing for the release of some collagen, but still form an extremely distended endoplasmic reticulum.
Modeling EEC syndrome in vitro has been achieved by reprogramming EEC fibroblasts carrying mutations R304W and R204W into induced pluripotent stem cell (iPSC) lines. EEC-iPSC recapitulated defective epidermal and corneal fates. This model further identified PRIMA-1MET, a small compound that was identified as a compound targeting and reactivating p53 mutants based on a cell-based screening for rescuing the apoptotic activity of p53, as efficient to rescue R304W mutation defect. Of interest, similar effect had been observed on keratinocytes derived from the same patients. PRIMA-1MET could become an effective therapeutic tool for EEC patients.
Further genetic research is necessary to identify and rule out other possible loci contributing to EEC syndrome, though it seems certain that disruption of the p63 gene is involved to some extent. In addition, genetic research with an emphasis on genetic syndrome differentiation should prove to be very useful in distinguishing between syndromes that present with very similar clinical findings. There is much debate in current literature regarding clinical markers for syndromic diagnoses. Genetic findings could have great implications in clinical diagnosis and treatment of not only EEC, but also many other related syndromes.
Clouston's hidrotic ectodermal dysplasia (also known as "Alopecia congenita with keratosis palmoplantaris," "Clouston syndrome," "Fischer–Jacobsen–Clouston syndrome," "Hidrotic ectodermal dysplasia," "Keratosis palmaris with drumstick fingers," and "Palmoplantar keratoderma and clubbing") is caused by mutations in a connexin gene, GJB6 or connexin-30, characterized by scalp hair that is wiry, brittle, and pale, often associated with patchy alopecia.