Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Atrial fibrillation increases the risk of heart failure by 11 per 1000, kidney problems by 6 per 1000, death by 4 per 1000, stroke by 3 per 1000, and coronary heart disease by 1 per 1000. Women have a worse outcome overall than men. Evidence increasingly suggests that atrial fibrillation is independently associated with a higher risk of developing dementia.
Determining the risk of an embolism causing a stroke is important for guiding the use of anticoagulants. The most accurate clinical prediction rules are:
- CHADS2
- CHA2DS2-VASc
Both the CHADS2 and the CHA2DS2-VASc score predict future stroke risk in people with a-fib with CHA2DS2-VASc being more accurate. Some that had a CHADS2 score of 0 had a CHA2DS2-VASc score of 3, with a 3.2% annual risk of stroke. Thus a CHA2DS2-VASc score of 0 is considered very low risk.
Although often regarded as a relatively benign heart rhythm problem, atrial flutter shares the same complications as the related condition atrial fibrillation. There is paucity of published data directly comparing the two, but overall mortality in these conditions appears to be very similar.
Due to the reentrant nature of atrial flutter, it is often possible to ablate the circuit that causes atrial flutter with radiofrequency catheter ablation. Catheter ablation is considered to be a first-line treatment method for many people with typical atrial flutter due to its high rate of success (>90%) and low incidence of complications. This is done in the cardiac electrophysiology lab by causing a ridge of scar tissue in the cavotricuspid isthmus that crosses the path of the circuit that causes atrial flutter. Eliminating conduction through the isthmus prevents reentry, and if successful, prevents the recurrence of the atrial flutter. Atrial fibrillation often occurs (30% within 5 years) after catheter ablation for atrial flutter.
In the general population, obesity appears to be the most important risk factor for LAE. LAE has been found to be correlated to body size, independent of obesity, meaning that LAE is more common in people with a naturally large body size. Also, a study found that LAE can occur as a consequence of atrial fibrillation (AF), although another study found that AF by itself does not cause LAE. The latter study also showed that the persistent type of AF was associated with LAE, but the number of years that a subject had AF was not.
Obstructive sleep apnea (OSA) may be a cause of LAE in some cases. When an OSA event occurs, an attempt is made to breathe with an obstructed airway and the pressure inside the chest is suddenly lowered. The negative intrathoracic pressure may cause the left atrium to expand and stretch its walls during each OSA event. Over time, the repetitive stretching of the left atrium may result in a persistent left atrial enlargement.
Left atrial enlargement can be mild, moderate or severe depending on the extent of the underlying condition. Although other factors may contribute, left atrium size has been found to be a predictor of mortality due to both cardiovascular issues as well as all-cause mortality. Current research suggests that left atrium size as measured by an echo-cardiograph may have prognostic implications for preclinical cardiovascular disease. However, studies that have found LAE to be a predictor for mortality recognize the need for more standardized left atrium measurements than those found in an echo-cardiogram.
Men have a higher incidence of heart failure, but the overall prevalence rate is similar in both sexes since women survive longer after the onset of heart failure. Women tend to be older when diagnosed with heart failure (after menopause), they are more likely than men to have diastolic dysfunction, and seem to experience a lower overall quality of life than men after diagnosis.
Until recently, it was generally assumed that the prognosis for individuals with diastolic dysfunction and associated intermittent pulmonary edema was better than those with systolic dysfunction. In fact, in two studies appearing in the New England Journal of Medicine in 2006, evidence was presented to suggest that the prognosis in diastolic dysfunction is the same as that in systolic dysfunction.
In tropical countries, the most common cause of HF is valvular heart disease or some type of cardiomyopathy. As underdeveloped countries have become more affluent, there has also been an increase in the incidence of diabetes, hypertension and obesity, which have in turn raised the incidence of heart failure.
Any condition or process that leads to stiffening of the left ventricle can lead to diastolic dysfunction. Causes of left ventricular stiffening include:
- A long-standing hypertension where, as a result of left ventricular muscle hypertrophy caused by the high pressure, the left ventricle has become stiff.
- Aortic stenosis of any cause where the ventricular muscle becomes hypertrophied, and thence stiff, as a result of the increased pressure load placed on it by the stenosis.
- Diabetes
- Age – elderly patients mainly if they have hypertension.
Causes of isolated right ventricular diastolic failure are uncommon. These causes include:
- Constrictive pericarditis
- Restrictive cardiomyopathy, which includes Amyloidosis (most common restrictive), Sarcoidosis and fibrosis.
Almost all cases of mitral stenosis are due to disease in the heart secondary to rheumatic fever and the consequent rheumatic heart disease. Uncommon causes of mitral stenosis are calcification of the mitral valve leaflets, and as a form of congenital heart disease. However, there are primary causes of mitral stenosis that emanate from a cleft mitral valve. It is the most common valvular heart disease in pregnancy.
Other causes include infective endocarditis where the vegetations may favor increase risk of stenosis. Other rare causes include mitral annular calcification, endomyocardial fibroelastosis, malignant carcinoid syndrome, systemic lupus erythematosus, whipple disease, fabry disease, and rheumatoid arthritis. hurler' disease, hunter's disease, amyloidosis.
The natural history of mitral stenosis secondary to rheumatic fever (the most common cause) is an asymptomatic latent phase following the initial episode of rheumatic fever. This latent period lasts an average of 16.3 ± 5.2 years. Once symptoms of mitral stenosis begin to develop, progression to severe disability takes 9.2 ± 4.3 years.
In individuals having been offered mitral valve surgery but refused, "survival" with medical therapy alone was 44 ± 6% at 5 years, and 32 ± 8% at 10 years after they were offered correction.
Arterial embolism can cause occlusion in any part of the body. It is a major cause of infarction, tissue death due to the blockage of blood supply.
An embolus lodging in the brain from either the heart or a carotid artery will most likely be the cause of a stroke due to ischemia.
An arterial embolus might originate in the heart (from a thrombus in the left atrium, following atrial fibrillation or be a septic embolus resulting from endocarditis). Emboli of cardiac origin are frequently encountered in clinical practice. Thrombus formation within the atrium occurs mainly in patients with mitral valve disease, and especially in those with mitral valve stenosis (narrowing), with atrial fibrillation (AF). In the absence of AF, pure mitral regurgitation has a low incidence of thromboembolism.
The risk of emboli forming in AF depends on other risk factors such as age, hypertension, diabetes, recent heart failure, or previous stroke.
Thrombus formation can also take place within the ventricles, and it occurs in approximately 30% of anterior-wall myocardial infarctions, compared with only 5% of inferior ones. Some other risk factors are poor ejection fraction (<35%), size of infarct, and the presence of AF. In the first three months after infarction, left-ventricle aneurysms have a 10% risk of emboli forming.
Patients with prosthetic valves also carry a significant increase in risk of thromboembolism. Risk varies, based on the valve type (bioprosthetic or mechanical); the position (mitral or aortic); and the presence of other factors such as AF, left-ventricular dysfunction, and previous emboli.
Emboli often have more serious consequences when they occur in the so-called "end circulation": areas of the body that have no redundant blood supply, such as the brain and heart.
Embolism can be classified as to where it enters the circulation either in arteries or in veins. Arterial embolism are those that follow and, if not dissolved on the way, lodge in a more distal part of the systemic circulation. Sometimes, multiple classifications apply; for instance a pulmonary embolism is classified as an arterial embolism as well, in the sense that the clot follows the pulmonary artery carrying deoxygenated blood away from the heart. However, pulmonary embolism is generally classified as a form of venous embolism, because the embolus forms in veins, e.g. deep vein thrombosis.
There are various individual risk factors associated with having a silent stroke. Many of these risk factors are the same as those associated with having a major symptomatic stroke.
- Acrolein: elevated levels of acrolein, a toxic metabolite produced from the polyamines spermine, spermidine and by amine oxidase serve as a marker for silent stroke, when elevated in conjunction with C-reactive protein and interleukin 6 the confidence levels in predicting a silent stroke risk increase.
- Adiponectin: is a type of protein secreted by adipose cells that improves insulin sensitivity and possesses antiatherogenic properties. Lower levels of s-adiponectin are associated with ischemic stroke.
- Aging: the prevalence of silent stroke rises with increasing age with a prevalence rate of over twenty percent of the elderly increasing to 30%-40% in those over the age of 70.
- Anemia: children with acute anemia caused by medical conditions other than sickle cell anemia with hemoglobin below 5.5 g/dL. are at increased risk for having a silent stroke according to a study released at American Stroke Association's International Stroke Conference 2011. The researchers suggested a thorough examination for evidence of silent stroke in all severely anemic children in order to facilitate timely intervention to ameliorate the potential brain damage.
- Sickle cell anemia: is an autosomal recessive genetic blood disorder caused in the gene (HBB gene) which codes for hemoglobin (Hg) and results in lowered levels. The blood cells in sickle cell disease are abnormally shaped (sickle-shaped) and may form clots or block blood vessels. Estimates of children with sickle cell anemia who suffer strokes (with silent strokes predominating in the younger patients) range from 15%-30%. These children are at significant risk of cognitive impairment and poor educational outcomes.
- Thalassemia major: is an autosomal recessive genetically inherited form of hemolytic anemia, characterized by red blood cell (hemoglobin) production abnormalities. Children with this disorder are at increased risk for silent stroke.
- Atrial fibrillation (AF): atrial fibrillation (irregular heartbeat) is associated with a doubled risk for silent stroke.
- Cigarette smoking: The procoagulant and atherogenic effects of smoking increase the risk for silent stroke. Smoking also has a deleterious effect on regional cerebral blood flow (rCBF). The chances of having a stroke increase with the amount of cigarettes smoked and the length of time an individual has smoked (pack years).
- C-reactive protein (CRP) and Interleukin 6 (IL6): C-reactive protein is one of the plasma proteins known as acute phase proteins (proteins whose plasma concentrations increase (or decrease) by 25% or more during inflammatory disorders) which is produced by the liver. The level of CRP rises in response to inflammation in various parts of the body including vascular inflammation. The level of CRP can rise as high as 1000-fold in response to inflammation. Other conditions that can cause marked changes in CRP levels include infection, trauma, surgery, burns, inflammatory conditions, and advanced cancer. Moderate changes can also occur after strenuous exercise, heatstroke, and childbirth. Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test have a close correlation to increased risk of silent stroke. Interleukin-6 is an interleukin (type of protein) produced by T-cells (specialized white blood cells), macrophages and endothelial cells. IL6 is also classified as a cytokine (acts in relaying information between cells). IL6 is involved in the regulation of the acute phase response to injury and infection may act as both an anti-inflammatory agent and a pro-inflammatory.Increased levels of CRP as measured by a CRP test or the more sensitive high serum CRP (hsCRP) test and elevated levels of I6 as measured by an IL6 ELISA are markers for the increased risk of silent stroke.
- Diabetes mellitus: untreated or improperly managed diabetes mellitus is associated with an increased risk for silent stroke.
- Hypertension: which affects up to 50 million people in the United States alone is the major treatable risk factor associated with silent stokes.
- Homocysteine: elevated levels of total homocysteine (tHcy) an amino acid are an independent risk factor for silent stroke, even in healthy middle-aged adults.
- Metabolic syndrome (MetS):Metabolic syndrome is a name for a group of risk factors that occur together and increase the risk for coronary artery disease, stroke, and type 2 diabetes. A higher number of these MetS risk factors the greater the chance of having a silent sroke.
- Polycystic ovary syndrome (PCOS): is associated with double the risk for arterial disease including silent stroke independent of the subjects Body mass index (BMI).
- Sleep apnea: is a term which encompasses a heterogeneous group of sleep-related breathing disorders in which there is repeated intermittent episodes of breathing cessation or hypopnea, when breathing is shallower or slower than normal. Sleep apnea is a common finding in stroke patients but recent research suggests that it is even more prevalent in silent stroke and chronic microvascular changes in the brain. In the study presented at the American Stroke Association's International Stroke Conference 2012 the higher the apnea-hypopnea index, the more likely patients had a silent stroke.
Transfusion therapy lowers the risk for a new silent stroke in children who have both abnormal cerebral artery blood flow velocity, as detected by transcranial Doppler, and previous silent infarct, even when the initial MRI showed no abnormality. A finding of elevated TCD ultrasonographic velocity warrants MRI of the brain, as those with both abnormalities who are not provided transfusion therapy are at higher risk for developing a new silent infarct or stroke than are those whose initial MRI showed no abnormality.
Treatment should be sought immediately in order to avoid hospitalization. If not treated, hospitalization for an extended period of time (usually two weeks) is likely. During hospitalization, the patient is tested for signs of system degradation, especially of the skeletal structure and the digestive tract. By this time open sores will develop on the upper torso. Some will be the size of dimes, others will be large enough to stick a couple fingers into. They will crust up, causing cohesion to any fabric the sores touch, which is extremely painful to remove. It is recommended to sleep on one's sides until the cystic condition subsides, in order to avoid any uncomfortable situations. Debridement and steroid therapy is preferred over antibiotics. Recurrent AF is extremely rare. Bone lesions typically resolve with treatment, but residual radiographic changes, such as sclerosis and hyperostosis, may remain. Scarring and fibrosis may result from this acute inflammatory process.
The disease activates at the height of puberty, usually at around 13 years of age. Acne fulminans predominantly affects young males aged 13 to 22 years with a history of acne.
In 1958, at a meeting of the Detroit Dermatological Society, Burns and Colville presented a 16-year-old white boy with acute febrile disease and acne conglobata. Many similar cases have been reported since then. Genetic factors may play an important role in some patients; 4 sets of identical twins who developed an identical pattern of acne fulminans have been documented.
Depending on the mutation, a person with a 46,XY karyotype and AIS can have either a male (MAIS) or female (CAIS) phenotype, or may have genitalia that are only partially masculinized (PAIS). The gonads are testes regardless of phenotype due to the influence of the Y chromosome. A 46,XY female, thus, does not have ovaries or a uterus, and can neither contribute an egg towards conception nor gestate a child.
Several case studies of fertile 46,XY males with AIS have been published, although this group is thought to be a minority. Additionally, some infertile males with MAIS have been able to conceive children after increasing their sperm count through the use of supplementary testosterone. A genetic male conceived by a man with AIS would not receive his father's X chromosome, thus would neither inherit nor carry the gene for the syndrome. A genetic female conceived in such a way would receive her father's X chromosome, thus would become a carrier.
Estimates for the incidence of androgen insensitivity syndrome are based on a relatively small population size, thus are known to be imprecise. CAIS is estimated to occur in one of every 20,400 46,XY births. A nationwide survey in the Netherlands based on patients with genetic confirmation of the diagnosis estimates that the minimal incidence of CAIS is one in 99,000. The incidence of PAIS is estimated to be one in 130,000. Due to its subtle presentation, MAIS is not typically investigated except in the case of male infertility, thus its true prevalence is unknown.
RA has been found among alcohol-dependent patients who suffer from Korsakoff's syndrome. Korsakoff's syndrome patients suffer from retrograde amnesia due to a thiamine deficiency (lack of vitamin B1). Also, chronic alcohol use disorders are associated with a decrease in volume of the left and right hippocampus.
These patients' regular diet consists mostly of hard alcohol intake, which lacks the necessary nutrients for healthy development and maintenance. Therefore, after a prolonged time consuming primarily alcohol, these people undergo memory difficulties and ultimately suffer from RA. However, some of the drawback of using Korsakoff patients to study RA is the progressive nature of the illness and the unknown time of onset.