Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Women in sports such as association football, basketball, and tennis are significantly more prone to ACL injuries than men. The discrepancy has been attributed to gender differences in anatomy, general muscular strength, reaction time of muscle contraction and coordination, and training techniques.
Gender differences in ACL injury rates become evident when specific sports are compared. A review of NCAA data has found relative rates of injury per 1000 athlete exposures as follows:
- Men's basketball 0.07, women's basketball 0.23
- Men's lacrosse 0.12, women's lacrosse 0.17
- Men's football 0.09, women's football 0.28
The highest rate of ACL injury in women occurred in gymnastics, with a rate of injury per 1000 athlete exposures of 0.33
Of the four sports with the highest ACL injury rates, three were women's – gymnastics, basketball and soccer.
According to recent studies, female athletes are two to eight times more likely to strain their anterior cruciate ligament (ACL) in sports that involve cutting and jumping as compared to men who play the same particular sports (soccer, basketball, and volleyball). Differences between males and females identified as potential causes are the active muscular protection of the knee joint, the greater Q angle putting more medial torque on the knee joint, relative ligament laxity caused by differences in hormonal activity from estrogen and relaxin, intercondylar notch dimensions, and muscular strength.
High school athletes are at increased risk for ACL tears when compared to non-athletes. This risk increases with certain types of sports. Among high school girls, the sport with the highest risk of ACL tear is soccer, followed by basketball and lacrosse. The highest risk sport for boys was basketball, followed by lacrosse and soccer. Children and young athletes may benefit from early surgical reconstruction after ACL injury. Young athletes who have early surgical reconstruction of their torn ACL are more likely to return to their previous level of athletic ability when compared to those who underwent delayed surgery or nonoperative treatment. They are also less likely to experience instability in their knee if they undergo early surgery.
In 2010 national statistics was done by Agency for Healthcare Research and Quality for posterior cruciate ligaments injuries. They found that 463 patients were discharge for having some type of PCL injury. The 18- to 44-year-old age group was found to have the highest injuries reported (figure 1). One reason why this age group consists of the majority of injuries to the PCL is because people are still very active in sports at this age. Men were also reported having more injuries to the PCL (figure 3).
According to the posterior cruciate ligament injuries only account for 1.5 percent of all knee injuries (figure 2). If it is a single injury to the posterior cruciate ligament that requires surgery only accounted for 1.1 percent compared to all other cruciate surgeries but when there was multiple injuries to the knee the posterior cruciate ligament accounted for 1.2 percent of injuries.
Isolated and combined posterolateral knee injuries are difficult to accurately diagnose in patients presenting with acute knee injuries. The incidence of isolated posterolateral corner injuries has been reported to be between 13% and 28%. Most PLC injuries accompany an ACL or PCL tear, and can contribute to ACL or PCL reconstruction graft failure if not recognized and treated. A study by LaPrade "et al." in 2007 showed the incidence of posterolateral knee injuries in patients presenting with acute knee injuries and hemarthrosis (blood in the knee joint) was 9.1%.
A study containing 100 consecutive patients with a recent anterior cruciate ligament injury were examined with respect to type of sports activity that caused the injury. Of the 100 consecutive ACL injuries, there were also 53 medial collateral ligament injuries, 12 medial, 35 lateral and 11 bicompartmental meniscal lesions. 59/100 patients were injured during contact sports, 30/100 in downhill skiing and 11/100 in other recreational activities, traffic accidents or at work.
An associated medial collateral ligament tear was more common in skiing (22/30) than during contact sports (23/59), whereas a bicompartmental meniscal lesion was found more frequently in contact sports (9/59) than in skiing (0/30). Weightbearing was reported by 56/59 of the patients with contact sports injuries whereas 8/30 of those with skiing injuries. Non-weightbearing in the injury situation led to the same rate of MCL tears (18/28) as weightbearing (35/72) but significantly more intact menisci (19/28 vs 23/72). Thus, contact sports injuries were more often sustained during weightbearing, with a resultant joint compression of both femuro-tibial compartments as shown by the higher incidence of bicompartmental meniscal lesions. The classic "unhappy triad" was a rare finding (8/100) and Fridén T, Erlandsson T, Zätterström R, Lindstrand A, and Moritz U. suggest that this entity should be replaced by the "unhappy compression injury".
The meniscal tear is the most common knee injury. A meniscal tear tends to be more frequent in sports that have rough contact or pivoting sports such as soccer. The meniscal tear is more common in males than females. The ratio is about two and a half males to one female. Males between the ages of thirty-one and forty tend to tear their meniscus more frequently than younger men. Females on the other hand, seem to be more likely to tear their meniscus between the ages of eleven and twenty. People who work in straining jobs such as construction or pro athletes are also more likely to have a meniscal tear because of all the different tensions of their knees. According to the United States National Library of Medicine, the isolated medial meniscal tear occurs more frequently than any other tear associated with the meniscus. The prevalence of meniscus tears is the same for both knees. In a few different studies the BMI of a person can have a greater effect on the frequency of a meniscus tear because having a higher BMI will result in more weight on the joints which can cause the knee to be non-aligned which causes more weight on the muscles resulting in an easier tear. In 2008 the U.S Department of Health and Human Services reported a combined total of 2,295 discharges for the principal diagnosis of tear of lateral cartilage/meniscus (836.0), tear of medial cartilage/meniscus (836.1), and tear of cartilage/meniscus (836.2). Females had a total of 53.49% discharges while males had 45.72%. Individuals between the ages of 45–68 years had an average of 31.73% discharges followed by age group 65–84 with 28.82%. The average length of stay for a patient diagnosed with torn menisci was 2.7 days for males and 3.7 days for females. There was a report of 6,941 hospital discharges for knee repair. Individuals between 18–44 years of age were among the highest with 37.37% total of discharges followed by the age group 45–64 with a percentage of 36.34%. Males had a slightly higher number of discharges (50.78%) than females (48.66%). The average length of stay for both male and female patients in a hospital setting was 3.1.
Future research into posterolateral injuries will focus on both the treatment and diagnosis of these types of injuries to improve PLC injury outcomes. Studies are needed to correlate injury patterns and mechanisms with clinical measures of knee instability and laxity.
Tear of a meniscus is a common injury in many sports. The menisci hold 30–50% of the body load in standing position. Some sports where a meniscus tear is common are American football, association football, ice hockey and tennis. Regardless of what the activity is, it is important to take the correct precautions to prevent a meniscus tear from happening.
Although strains are not restricted to athletes and can happen while doing everyday tasks, however, people who play sports are more at risk for developing a strain. It should also be noted that it is common for an injury to develop when there is a sudden increase in duration, intensity, or frequency of an activity.
Although the precise mechanism of injury is unclear, the injury occurs in children who have fallen heavily with their arm trapped under the body. In his original description of the injury, Hume suggested that the injury occurred as a result of hyperextension of the elbow leading to fracture of the olecranon, with pronation of the forearm leading to the radial head dislocation.
Injury
Because the medial collateral ligament resists widening of the inside of the knee joint, the ligament is usually injured when the outside of the knee joint is struck. This force causes the outside of the knee to buckle, and the inside to widen. When the MCL is stretched too far, it is susceptible to tearing and injury. This is the injury seen by the action of "clipping" in a football game.
An injury to the MCL may occur as an isolated injury, or it may be part of a complex injury to the knee. Other ligaments ACL, or meniscus, may be torn along with a MCL injury.
Symptoms
The most common symptom following an MCL injury is pain directly over the ligament. Swelling over the torn ligament may appear, and bruising and generalized joint swelling are common 1 to 2 days after the injury. In more severe injuries, patients may complain that the knee feels unstable.
Treatment
Treatment of an MCL tear depends on the severity of the injury. Treatment always begins with allowing the pain to subside, beginning work on mobility, followed by strengthening the knee to return to sports and activities. Bracing can often be useful for treatment of MCL injuries. Fortunately, most often surgery is not necessary for the treatment of an MCL tear.
Turf toe is named from the injury being associated with playing sports on rigid surfaces such as artificial turf and is a fairly common injury among professional American football players. Often, the injury occurs when someone or something falls on the back of the calf while that leg's knee and tips of the toes are touching the ground. The toe is hyperextended and thus the joint is injured. Additionally, athletic shoes with very flexible soles combined with cleats that "grab" the turf will cause overextension of the big toe. This can occur on the lesser toes as well. It has also been observed in sports beyond American football, including soccer, basketball, rugby, volleyball, and tae kwon do. This is a primary reason why many athletes prefer natural grass to turf, because it is softer.
An overuse injury occurs when a certain activity is repeated frequently, and the body doesn't have enough time to recover in between occurrences. Some examples include bursitis and tendinitis.
In humans, the midfoot consists of five bones that form the arches of the foot (the cuboid, navicular, and three cuneiform bones) and their articulations with the bases of the five metatarsal bones. Lisfranc injuries are caused when excessive kinetic energy is applied either directly or indirectly to the midfoot and are often seen in traffic collisions or industrial accidents.
Direct Lisfranc injuries are usually caused by a crush injury, such as a heavy object falling onto the midfoot, or the foot being run over by a car or truck, or someone landing on the foot after a fall from a significant height. Indirect Lisfranc injuries are caused by a sudden rotational force on a plantar flexed (downward pointing) forefoot. Examples of this type of trauma include a rider falling from a horse but the foot remaining trapped in the stirrup, or a person falling forward after stepping into a storm drain.
In athletic trauma, Lisfranc injuries occur commonly in activities such as windsurfing, kitesurfing, wakeboarding, or snowboarding (where appliance bindings pass directly over the metatarsals). American football players occasionally acquire this injury, and it most often occurs when the athlete's foot is plantar flexed and another player lands on the heel. This can also be seen in pivoting athletic positions such as a baseball catcher or a ballerina spinning.
The consequences of whiplash range from mild pain for a few days (which is the case for most people), to severe disability. It seems that around 50% will have some remaining symptoms.
Alterations in resting state cerebral blood flow have been demonstrated in patients with chronic pain after whiplash injury. There is evidence for persistent inflammation in the neck in patients with chronic pain after whiplash injury.
There has long been a proposed link between whiplash injuries and the development of temporomandibular joint dysfunction (TMD). A recent review concluded that although there are contradictions in the literature, overall there is moderate evidence that TMD can occasionally follow whiplash injury, and that the incidence of this occurrence is low to moderate.
Medial knee injuries are those to the medial side – the inside of the knee – are the most common. The medial ligament complex of the knee is composed of the superficial medial collateral ligament (sMCL), deep medial collateral ligament (dMCL), and the posterior oblique ligament (POL). These ligaments have also been called the medial collateral ligament (MCL), tibial collateral ligament, mid-third capsular ligament, and oblique fibers of the sMCL, respectively. This complex is the major stabilizer of the medial knee. Injuries to the medial side of the knee are most commonly isolated to these ligaments. A thorough understanding of the anatomy and function of the medial knee structures, along with a detailed history and physical exam, are imperative to diagnosing and treating these injuries.
The Hume fracture is an injury of the elbow comprising a fracture of the olecranon with an associated anterior dislocation of the radial head which occurs in children. It was originally described as an undisplaced olecranon fracture, but more recently includes displaced fractures and can be considered a variant of the Monteggia fracture.
The injury was described in 1957 by A.C. Hume of the orthopaedic surgery department of St. Bartholomew's Hospital, Rochester.
Any type of injury that occurs to the body through sudden trauma, such as a fall, twist, or blow to the body. A few examples of this type of injury would be sprains, strains, and contusions.
Lisfranc injury, also known as Lisfranc fracture, is an injury of the foot in which one or more of the metatarsal bones are displaced from the tarsus. The injury is named after Jacques Lisfranc de St. Martin (2 April 179013 May 1847), a French surgeon and gynecologist who described an amputation of the foot through the tarsometatarsal articulation, in 1815, after the War of the Sixth Coalition.
The radial head fracture is usually managed by open reduction internal fixation; if the fracture is too comminuted, a radial head implant can be used. Excision of the radial head should be avoided, as the radius will migrate proximally leading to wrist pain and loss of pronation and supination of the wrist. Delayed treatment of the radial head fracture will also lead to proximal migration of the radius.
The distal radio-ulnar joint dislocation can be reduced by supination of the forearm, and may be pinned in place for 6 weeks to allow healing of the interosseous membrane.
Future research with regard to medial knee injuries should evaluate clinical outcomes between different reconstruction techniques. Determining the advantages and disadvantages of these techniques would also be beneficial for optimizing treatment.
The broken bone pieces or the dislocated head of the femur may injure the sciatic nerve, causing paralysis of the foot; the patient may or may not recover sensation in the foot, depending on the extent of injury to the nerve. The posterior wall fragment may be one large piece, or multiple pieces, and may be associated with impaction of the bone. Sciatic nerve injury and stoppage of blood supply to femoral head at the time of accident or during surgery to treat may occur. Deep vein thrombosis and pulmonary embolism are other complications that may occur in any type of injury to the acetabulum.
Injury of axillary nerve (axillary neuropathy) is a condition that can be associated with a surgical neck of the humerus fracture.
It can also be associated with a dislocated shoulder or with traction injury to the nerve, which may be caused by over-aggressive stretching or blunt trauma that does not result in fracture or dislocation. One form of this injury is referred to as axillary nerve palsy.
Injury most commonly occurs proximal to the quadrilateral space.
Injury in this nerve causes paralysis (as always) to the muscles innervated by it, most importantly deltoid muscle. This muscle is the main abductor of the shoulder joint from 18 to 90 degrees (from 0 to 18 by supraspinatus). Injury can result in a reduction in shoulder abduction. So a test can be applied to a patient with injury of axillary nerve by trying to abduct the injured shoulder against resistance.
The pain from axillary neuropathy is usually dull and aching rather than sharp, and increases with increasing range of motion. Many people notice only mild pain but considerable weakness when they try to use the affected shoulder.
The exact injury mechanism that causes whiplash injuries is unknown. A whiplash injury may be the result of impulsive retracting of the spine, mainly the ligament: anterior longitudinal ligament which is stretched or tears, as the head snaps forward and then back again causing a whiplash injury.
A whiplash injury from an automobile accident is called a cervical acceleration–deceleration injury. Cadaver studies have shown that as an automobile occupant is hit from behind, the forces from the seat back compress the kyphosis of the thoracic spine, which provides an axial load on the lumbar spine and cervical spine. This forces the cervical spine to deform into an S-shape where the lower cervical spine is forced into a kyphosis while the upper cervical spine maintains its lordosis. As the injury progresses, the whole cervical spine is finally hyper-extended.
Whiplash may be caused by any motion similar to a rear-end collision in a motor vehicle, such as may take place on a roller coaster or other rides at an amusement park, sports injuries such as skiing accidents, other modes of transportation such as airplane travel, or from being hit, kicked or shaken.. The alleged shaken baby syndrome can result in a whiplash injury.
Whiplash associated disorders sometimes include injury to the cerebrum. In a severe cervical acceleration–deceleration syndrome, a brain injury known as a coup-contra-coup injury occurs. A coup-contra-coup injury occurs as the brain is accelerated into the cranium as the head and neck hyperextend, and is then accelerated into the other side as the head and neck rebound to hyper-flexion or neutral position.
"Volunteer studies of experimental, low-velocity rear-end collisions have shown a percentage of subjects to report short-lived symptoms",
From this type of research it has been inferred that whiplash symptoms might not always have any pathological (injury) explanation. However, over the last decade, academic surgeons in the UK and US have sought to unravel the whiplash enigma. A 1000-case, four-year observational study published in 2012 said that the "missing link" in whiplash injuries is the trapezius muscle which may be damaged through eccentric muscle contraction during the whiplash mechanism described above and below. Another study suggested that "shneck pain" was in the nearby supraspinatus muscle and this resulted from a seemingly asymptomatic form of shoulder impingement. Shoulder impingement is commonly asymptomatic and the shoulder may be injured along with the neck in a motor vehicle accident. Whiplash due to The Referred Shoulder Impingement Syndrome was successfully treated using conventional treatments for shoulder impingement including anti inflammatory steroids and non steroids, and by avoiding the overhead position of shoulder impingement during the day and night time. All of this work demonstrates that historically and indeed presently whiplash patients' pain sources may be missed if it is outside of the neck. Hence the pathology in whiplash may have been missed and the treatment ineffective.
Altogether it is of note that especially in many Western countries, after a motor vehicle collision, those involved seek health care for the assessment of injuries and for insurance documentation purposes. In contrast, in many less wealthy countries, there may be limited access to care and insurance may only be available to the wealthy. Against this background, the “(late) whiplash syndrome” (ICD-10: S13.4) has been one special focus of continuous and controversial scientific research since the 1950s as the worldwide incidence of such injuries varies enormously 16-2000 per 100,000 population and the late whiplash syndrome in these cases varies between 18% to 40%. Thus, Schrader et al’s important work in "The Lancet" showed that late whiplash syndrome after a motor vehicle collision is rare or uncommon in Lithuania, and Cassidy et al’s conclusion in the "New England Journal of Medicine" is that “the elimination of compensation for pain and suffering is associated with a decreased incidence and improved prognosis of whiplash injury”. Moreover, one should also mention an experimental study in 2001 in which participants were placed in a stationary vehicle with a curtain blocking their rear view, and exposed to a simulated rear-end collision. Twenty percent of patients had symptoms at 3 days, despite the fact that no collision actually occurred. From the evolving viewpoint of naturalistic Internet search engine analytics in has been shown in 2017 that the expectations for receiving compensation may influence Internet search behavior in relation to whiplash injury.