Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Complications of HDN could include kernicterus, hepatosplenomegaly, inspissated (thickened or dried) bile syndrome and/or greenish staining of the teeth, hemolytic anemia and damage to the liver due to excess bilirubin. Similar conditions include acquired hemolytic anemia, congenital toxoplasma and syphilis infection, congenital obstruction of the bile duct and cytomegalovirus infection.
- High at birth or rapidly rising bilirubin
- Prolonged hyperbilirubinemia
- Bilirubin Induced Neuorlogical Dysfunction
- Cerebral Palsy
- Kernicterus
- Neutropenia
- Thrombocytopenia
- Hemolytic Anemia - MUST NOT be treated with iron
- Late onset anemia - Must NOT be treated with iron. Can persist up to 12 weeks after birth.
In 2003, the incidence of Rh(D) sensitization in the United States was 6.8 per 1000 live births; 0.27% of women with an Rh incompatible fetus experience alloimmunization.
Suggestions have been made that women of child bearing age or young girls should not be given a transfusion with Kell positive blood. Donated blood is not currently screened (in the U.S.A.) for the Kell blood group antigens as it is not considered cost effective at this time.
It has been hypothesized that IgG anti-Kell antibody injections would prevent sensitization to RBC surface Kell antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Kell antibodies have not been developed at the present time.
It has been suggested that women of child bearing age or young girls should not be given a transfusion with Rhc positive blood (or Kell positive blood for similar reasons). This would require a lot of extra work in blood transfusion departments and it is considered not economical to do the blood group screening at the present time.
It is theoretically likely that IgG anti-Rhc antibody injections would prevent sensitization to RBC surface Rhc antigens in a similar way that IgG anti-D antibodies (Rho(D) Immune Globulin) are used to prevent Rh disease, but the methods for IgG anti-Rhc antibodies have not been developed at the present time.
Mothers who are negative for the Kell antigen develop antibodies after being exposed to red blood cells that are positive for Kell. Over half of the cases of hemolytic disease of the newborn owing the anti-Kell antibodies are caused by multiple blood transfusions, with the remainder due to a previous pregnancy with a Kell positive baby.
In about a third of all ABO incompatible pregnancies maternal IgG anti-A or IgG anti-B antibodies pass through the placenta to the fetal circulation leading to a weakly positive direct Coombs test for the neonate's blood. However, ABO HDN is generally mild and short-lived and only occasionally severe because:
- IgG anti-A (or IgG anti-B) antibodies that enter the fetal circulation from the mother find A (or B) antigens on many different fetal cell types, leaving fewer antibodies available for binding onto fetal red blood cells.
- Fetal RBC surface A and B antigens are not fully developed during gestation and so there are a smaller number of antigenic sites on fetal RBCs.
Anti-A and anti-B antibodies are usually IgM and do not pass through the placenta, but some mothers "naturally" have IgG anti-A or IgG anti-B antibodies, which can pass through the placenta. Exposure to A-antigens and B-antigens, which are both widespread in nature, usually leads to the production of IgM anti-A and IgM anti-B antibodies but occasionally IgG antibodies are produced.
Some mothers may be sensitized by fetal-maternal transfusion of ABO incompatible red blood and produce immune IgG antibodies against the antigen they do not have and their baby does. For example, when a mother of genotype OO (blood group O) carries a fetus of genotype AO (blood group A) she may produce IgG anti-A antibodies. The father will either have blood group A, with genotype AA or AO, or more rarely, have blood group AB, with genotype AB.
It would be very rare for ABO sensitization to be caused by therapeutic blood transfusion as a great deal of effort and checking is done to ensure that blood is ABO compatible between the recipient and the donor.
Hemolytic disease of the fetus and newborn (HDN) is a condition where the passage of maternal antibodies results in the hemolysis of fetal/neonatal red cells. The antibodies can be naturally occurring such as anti-A, and anti-B, or immune antibodies developed following a sensitizing event. Isoimmunization occurs when the maternal immune system is sensitized to red blood cell surface antigens. The most common causes of isoimmunization are blood transfusion, and fetal-maternal hemorrhage. The hemolytic process can result in anemia, hyperbilirubinemia, neonatal thrombocytopenia, and neonatal neutropenia. With the use of RhD Immunoprophylaxis, (commonly called Rhogam), the incidence of anti-D has decreased dramatically and other alloantibodies are now a major cause of HDN.
Hemolytic disease of the fetus and newborn (HDN) is a condition where the passage of maternal antibodies results in the hemolysis of fetal/neonatal red cells. The antibodies can be naturally occurring such as anti-A, and anti-B, or immune antibodies developed following a sensitizing event. Isoimmunization occurs when the maternal immune system is sensitized to red blood cell surface antigens. The most common causes of isoimmunization are blood transfusion, and fetal-maternal hemorrhage. The hemolytic process can result in anemia, hyperbilirubinemia, neonatal thrombocytopenia, and neonatal neutropenia. With the use of RhD Immunoprophylaxis, (commonly called Rhogam), the incidence of anti-D has decreased dramatically and other alloantibodies are now a major cause of HDN.
Most Rh disease can be prevented by treating the mother during pregnancy or promptly (within 72 hours) after childbirth. The mother has an intramuscular injection of anti-Rh antibodies (Rho(D) immune globulin). This is done so that the fetal rhesus D positive erythrocytes are destroyed before the immune system of the mother can discover them and become sensitized. This is passive immunity and the effect of the immunity will wear off after about 4 to 6 weeks (or longer depending on injected dose) as the anti-Rh antibodies gradually decline to zero in the maternal blood.
It is part of modern antenatal care to give all rhesus D negative pregnant women an anti-RhD IgG immunoglobulin injection at about 28 weeks gestation (with or without a booster at 34 weeks gestation). This reduces the effect of the vast majority of sensitizing events which mostly occur after 28 weeks gestation. Giving Anti-D to all Rhesus negative pregnant women can mean giving it to mothers who do not need it (because her baby is Rhesus negative or their blood did not mix). Many countries routinely give Anti-D to Rhesus D negative women in pregnancy. In other countries, stocks of Anti-D can run short or even run out. Before Anti-D is made routine in these countries, stocks should be readily available so that it is available for women who need Anti-D in an emergency situation.
A recent review found research into giving Anti-D to all Rhesus D negative pregnant women is of low quality. However the research did suggest that the risk of the mother producing antibodies to attack Rhesus D positive fetal cells was lower in mothers who had the Anti-D in pregnancy. There were also fewer mothers with a positive kleihauer test (which shows if the mother’s and unborn baby’s blood has mixed).
Anti-RhD immunoglobulin is also given to non-sensitized rhesus negative women immediately (within 72 hours—the sooner the better) after potentially sensitizing events that occur earlier in pregnancy.
The discovery of cell-free DNA in the maternal plasma has allowed for the non-invasive determination of the fetal RHD genotype. In May 2017, the Society for Obstetrics and Gynecology of Canada is now recommending that the optimal management of the D-negative pregnant woman is based on the prediction of the fetal D-blood group by cell-free DNA in maternal plasma with targeted antenatal anti-D prophylaxis. This provides the optimal care for D-negative pregnant women and has been adopted as the standard approach in a growing number of countries around the world. It is no longer considered appropriate to treat all D-negative pregnant women with human plasma derivatives when there are no benefits to her or to the fetus in a substantial percentage of cases.
One study done by Moran et al., found that titers are not reliable for anti-E. Their most severe case of hemolytic disease of the newborn occurred with titers 1:2. Moran states that it would be unwise routinely to dismiss anti-E as being of little clinical consequence.
In the case of anti-E, the woman should be checked around 28 weeks to see if she has developed anti-c as well.
During any pregnancy a small amount of the baby's blood can enter the mother's circulation. If the mother is Rh negative and the baby is Rh positive, the mother produces antibodies (including IgG) against the rhesus D antigen on her baby's red blood cells. During this and subsequent pregnancies the IgG is able to pass through the placenta into the fetus and if the level of it is sufficient, it will cause destruction of rhesus D positive fetal red blood cells leading to the development of Rh disease. It may thus be regarded as insufficient immune tolerance in pregnancy. Generally rhesus disease becomes worse with each additional rhesus incompatible pregnancy.
The main and most frequent sensitizing event is child birth (about 86% of sensitized cases), but fetal blood may pass into the maternal circulation earlier during the pregnancy (about 14% of sensitized cases). Sensitizing events during pregnancy include c-section, miscarriage, therapeutic abortion, amniocentesis, ectopic pregnancy, abdominal trauma and external cephalic version. However, in many cases there was no apparent sensitizing event.
The incidence of Rh disease in a population depends on the proportion that are rhesus negative. Many non-Caucasian people have a very low proportion who are rhesus negative, so the incidence of Rh disease is very low in these populations. In Caucasian populations about 1 in 10 of all pregnancies are of a rhesus negative woman with a rhesus positive baby. It is very rare for the first rhesus positive baby of a rhesus negative woman to be affected by Rh disease. The first pregnancy with a rhesus positive baby is significant for a rhesus negative woman because she can be sensitized to the Rh positive antigen. In Caucasian populations about 13% of rhesus negative mothers are sensitized by their first pregnancy with a rhesus positive baby. Without modern prevention and treatment, about 5% of the second rhesus positive infants of rhesus negative women would result in stillbirths or extremely sick babies. Many babies who managed to survive would be severely ill. Even higher disease rates would occur in the third and subsequent rhesus positive infants of rhesus negative women. By using anti-RhD immunoglobulin (Rho(D) immune globulin) the incidence is massively reduced.
Rh disease sensitization is about 10 times more likely to occur if the fetus is ABO compatible with the mother than if the mother and fetus are ABO incompatible.
The most rapidly effective treatment in infants with severe hemorrhage and/or severe thrombocytopenia (30,000 μL) an infusion of (1 g/kg/day for two days) in the infant has been shown to rapidly increase platelet count and reduce the risk of related injury.
After a first affected pregnancy, if a mother has plans for a subsequent pregnancy, then the mother and father should be typed for platelet antigens and the mother screened for alloantibodies. Testing is available through reference laboratories (such as ). testing of the father can be used to determine zygosiity of the involved antigen and therefore risk to future pregnancies (if homozygous for the antigen, all subsequent pregnancies will be affected, if heterozygous, there is an approximate 50% risk to each subsequent pregnancy). During subsequent pregnancies, the genotype of the fetus can also be determined using amniotic fluid analysis or maternal blood as early as 18 weeks gestation to definitively determine the risk to the fetus.
Immune thrombocytopenic purpura (), sometimes called idiopathic thrombocytopenic purpura is a condition in which autoantibodies are directed against a patient's own platelets, causing platelet destruction and thrombocytopenia. Anti-platelet autoantibodies in a pregnant woman with immune thrombocytopenic purpura will attack the patient's own platelets and will also cross the placenta and react against fetal platelets. Therefore, is a significant cause of fetal and neonatal immune thrombocytopenia. Approximately 10% of newborns affected by will have platelet counts <50,000 μL and 1% to 2% will have a risk of intracerebral hemorrhage comparable to infants with .
Mothers with thrombocytopenia or a previous diagnosis of should be tested for serum antiplatelet antibodies. A woman with symptomatic thrombocytopenia and an identifiable antiplatelet antibody should be started on therapy for their which may include steroids or . Fetal blood analysis to determine the platelet count is not generally performed as -induced thrombocytopenia in the fetus is generally less severe than . Platelet transfusions may be performed in newborns, depending on the degree of thrombocytopenia.
Acquired hemolytic anemia can be divided into immune and non-immune mediated forms of hemolytic anemia.
Immune mediated hemolytic anaemia (direct Coombs test is positive)
- Autoimmune hemolytic anemia
- Warm antibody autoimmune hemolytic anemia
- Idiopathic
- Systemic lupus erythematosus (SLE)
- Evans' syndrome (antiplatelet antibodies and hemolytic antibodies)
- Cold antibody autoimmune hemolytic anemia
- Idiopathic cold hemagglutinin syndrome
- Infectious mononucleosis and mycoplasma (atypical) pneumonia
- Paroxysmal cold hemoglobinuria (rare)
- Alloimmune hemolytic anemia
- Hemolytic disease of the newborn (HDN)
- Rh disease (Rh D)
- ABO hemolytic disease of the newborn
- Anti-Kell hemolytic disease of the newborn
- Rhesus c hemolytic disease of the newborn
- Rhesus E hemolytic disease of the newborn
- Other blood group incompatibility (RhC, Rhe, Kidd, Duffy, MN, P and others)
- Alloimmune hemolytic blood transfusion reactions (i.e., from a non-compatible blood type)
- Drug induced immune mediated hemolytic anemia
- Penicillin (high dose)
- Methyldopa
PNH is rare, with an annual rate of 1-2 cases per million. The prognosis without disease-modifying treatment is 10–20 years. Many cases develop in people who have previously been diagnosed with aplastic anemia or myelodysplastic syndrome. The fact that PNH develops in MDS also explains why there appears to be a higher rate of leukemia in PNH, as MDS can sometimes transform into leukemia.
25% of female cases of PNH are discovered during pregnancy. This group has a high rate of thrombosis, and the risk of death of both mother and child are significantly increased (20% and 8% respectively).
In general, AIHA in children has a good prognosis and is self-limiting. However, if it presents within the first two years of life or in the teenage years, the disease often follows a more chronic course, requiring long-term immunosuppression, with serious developmental consequences. The aim of therapy may sometimes be to lower the use of steroids in the control of the disease. In this case, splenectomy may be considered, as well as other immunosuppressive drugs. Infection is a serious concern in patients on long-term immunosuppressant therapy, especially in very young children (less than two years).
Drug-induced nonautoimmune hemolytic anemia is a form of hemolytic anemia.
Non-immune drug induced hemolysis can occur via oxidative mechanisms. This is particularly likely to occur when there is an enzyme deficiency in the antioxidant defense system of the red blood cells. An example is where antimalarial oxidant drugs like primaquine damage red blood cells in Glucose-6-phosphate dehydrogenase deficiency in which the red blood cells are more susceptible to oxidative stress due to reduced NADPH production consequent to the enzyme
deficiency.
Some drugs cause RBC (red blood cell) lysis even in normal individuals. These include dapsone and sulfasalazine.
Non-immune drug-induced hemolysis can also arise from drug-induced damage to cell volume control mechanisms; for example drugs can directly or indirectly impair regulatory volume decrease mechanisms, which become activated during hypotonic RBC swelling to return the cell to a normal volume. The consequence of the drugs actions are irreversible cell swelling and lysis (e.g. ouabain at very high doses).
Cold agglutinins develop in more than 60% of patients with infectious mononucleosis, but hemolytic anemia is rare.
Classic chronic cold agglutinin disease is idiopathic, associated with symptoms and signs in relation to cold exposure.
Causes of the monoclonal secondary disease include the following:
- B-cell neoplasms - Waldenström macroglobulinemia, lymphoma, chronic lymphoid leukemia, myeloma
- Non hematologic neoplasms
Causes of polyclonal secondary cold agglutinin disease include the following:
- Mycoplasma infections.
- Viral infections: Infectious mononucleosis due to Epstein-Barr virus (EBV) or CMV, Mumps, varicella, rubella, adenovirus, HIV, influenza, hepatitis C.
- Bacterial infections: Legionnaire disease, syphilis, listeriosis and "Escherichia coli."
- Parasitic infections: Malaria and trypanosomiasis.
- Trisomy and translocation: Cytogenetic studies in patients with cold agglutinin disease have revealed the presence of trisomy 3 and trisomy 12. Translocation (8;22) has also been reported in association with cold agglutinin disease.
- Transplantation: Cold agglutinin–mediated hemolytic anemia has been described in patients after living-donor liver transplantation treated with tacrolimus and after bone marrow transplantation with cyclosporine treatments. It is postulated that such calcineurin inhibitors, which selectively affect T-cell function and spare B-lymphocytes, may interfere with the deletion of autoreactive T-cell clones, resulting in autoimmune disease.
- Systemic sclerosis: Cold agglutinin disease has been described in patients with sclerodermic features, with the degree of anemia being associated with increasing disease activity of the patient’s systemic sclerosis. This may suggest a close association between systemic rheumatic disease and autoimmune hematologic abnormalities.
- Hyperreactive malarial splenomegaly: Hyperreactive malarial splenomegaly (HMS) is an immunopathologic complication of recurrent malarial infection. Patients with HMS develop splenomegaly, acquired clinical immunity to malaria, high serum concentrations of anti-"Plasmodium" antibodies, and high titers of IgM, with a complement-fixing IgM that acts as a cold agglutinin.
- DPT vaccination: Diphtheria-pertussis-tetanus (DPT) vaccination has been implicated in the development of autoimmune hemolytic anemia caused by IgM autoantibody with a high thermal range. A total of 6 cases have been reported; 2 followed the initial vaccination and 4 followed the second or third vaccinations.
- Other: Equestrian perniosis is a rare cause of persistent elevated titers of cold agglutinins. Also rarely, the first manifestations of cold agglutinin disease can develop when a patient is subjected to hypothermia for cardiopulmonary bypass surgery.
Cold agglutinins, or cold autoantibodies, occur naturally in nearly all individuals. These natural cold autoantibodies occur at low titers, less than 1:64 measured at 4 °C, and have no activity at higher temperatures. Pathologic cold agglutinins occur at titers over 1:1000 and react at 28-31 °C and sometimes at 37 °C.
Cold agglutinin disease usually results from the production of a specific IgM antibody directed against the I/i antigens (precursors of the ABH and Lewis blood group substances) on red blood cells (RBCs). Cold agglutinins commonly have variable heavy-chain regions encoded by VH, with a distinct idiotype identified by the 9G4 rat murine monoclonal antibody.
G6PD-deficient individuals do not appear to acquire any illnesses more frequently than other people, and may have less risk than other people for acquiring ischemic heart disease and cerebrovascular disease.
Drug-induced autoimmune hemolytic anemia is a form of hemolytic anemia.
In some cases, a drug can cause the immune system to mistakenly think the body's own red blood cells are dangerous, foreign substances. Antibodies then develop against the red blood cells. The antibodies attach to red blood cells and cause them to break down too early. Drugs that can cause this type of hemolytic anemia include:
- Cephalosporins (a class of antibiotics) – most common cause
- Dapsone
- Levodopa
- Levofloxacin
- Methyldopa
- Nitrofurantoin
- Nonsteroidal anti-inflammatory drugs (NSAIDs)
- Phenazopyridine (pyridium)
- Quinidine
Penicillin in high doses can induce immune mediated hemolysis via the hapten mechanism in which antibodies are targeted against the combination of penicillin in association with red blood cells. Complement is activated by the attached antibody leading to the removal of red blood cells by the spleen.
The drug itself can be targeted by the immune system, e.g. by IgE in a Type I hypersensitivity reaction to penicillin, rarely leading to anaphylaxis.
AIHA may be:
- Idiopathic, that is, without any known cause
- Secondary to another disease, such as an antecedent upper respiratory tract infection, systemic lupus erythematosus or a malignancy, such as chronic lymphocytic leukemia (CLL)
Much literature exists regarding the treatment of AIHA. Efficacy of treatment depends on the correct diagnosis of either warm- or cold-type AIHA.
Warm-type AIHA is usually a more insidious disease, not treatable by simply removing the underlying cause. Corticosteroids are first-line therapy. For those who fail to respond or have recurrent disease, splenectomy may be considered. Other options for recurrent or relapsed disease include immunosuppressants such as rituximab, danazol, cyclophosphamide, azathioprine, or cyclosporine.
Cold agglutinin disease is treated with avoidance of cold exposure. Patients with more severe disease (symptomatic anemia, transfusion dependence) may be treated with rituximab. Steroids and splenectomy are less efficacious in cold agglutinin disease.
Paroxysmal cold hemoglobinuria is treated by removing the underlying cause, such as infection.