Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
          Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
           
        
The causes for PWS are either genetic or unknown. Some cases are a direct result of the RASA1 gene mutations. And individuals with RASA1 can be identified because this genetic mutation always causes multiple capillary malformations. PWS displays an autosomal dominant pattern of inheritance. This means that one copy of the damaged or altered gene is sufficient to elicit PWS disorder. In most cases, PWS can occur in people that have no family history of the condition. In such cases the mutation is sporadic. And for patients with PWS with the absence of multiple capillary mutations, the causes are unknown.
According to Boston’s Children Hospital, no known food, medications or drugs can cause PWS during pregnancy. PWS is not transmitted from person to person. But it can run in families and can be inherited. PWS effects both males and females equally and as of now no racial predominance is found
At the moment, there are no known measures that can be taken in order to prevent the onset of the disorder. But Genetic Testing Registry can be great resource for patients with PWS as it provides information of possible genetic tests that could be done to see if the patient has the necessary mutations. If PWS is sporadic or does not have RASA1 mutation then genetic testing will not work and there is not a way to prevent the onset of PWS.
Transaldolase deficiency is recognized as a rare inherited pleiotropic metabolic disorder first recognized and described in 2001 that is autosomal recessive. There have been only a few cases that have been noted, as of 2012 there have been 9 patients recognized with this disease and one fetus.
Cystic fibrosis transmembrane conductance regulator (CFTR) is a membrane protein and chloride channel in vertebrates that is encoded by the "CFTR" gene.
The CFTR gene codes for an ABC transporter-class ion channel protein that conducts chloride and thiocyanate ions across epithelial cell membranes. Mutations of the CFTR gene affecting chloride ion channel function lead to dysregulation of epithelial fluid transport in the lung, pancreas and other organs, resulting in cystic fibrosis. Complications include thickened mucus in the lungs with frequent respiratory infections, and pancreatic insufficiency giving rise to malnutrition and diabetes. These conditions lead to chronic disability and reduced life expectancy. In male patients, the progressive obstruction and destruction of the developing vas deferens (spermatic cord) and epididymis appear to result from abnormal intraluminal secretions, causing congenital absence of the vas deferens and male infertility.
PDP is a rare genetic disease. At least 204 cases of PDP have been reported. The precise incidence and prevalence of PDP are still unknown. A prevalence of 0.16% was suggested by Jajic et Jajic.
PDP occurs more frequently in men than in women (ratio around 7:1). Moreover, men suffer from more severe symptoms (see table 1). African American people are affected to a higher extent.
Table 1. Distribution of different forms of PDP among 201 reported affected men and women (167 men and 34 women).
The only known cause of this disorder is the mutation on the HDAC8 gene, which is located at Xq13.1. This disorder displays X-linked inheritance
Tumor hypoxia is the situation where tumor cells have been deprived of oxygen. As a tumor grows, it rapidly outgrows its blood supply, leaving portions of the tumor with regions where the oxygen concentration is significantly lower than in healthy tissues. Hypoxic microenvironements in solid tumors are a result of available oxygen being consumed within 70 to 150 μm of tumour vasculature by rapidly proliferating tumor cells thus limiting the amount of oxygen available to diffuse further into the tumor tissue. In order to support continuous growth and proliferation in challenging hypoxic environments, cancer cells are found to alter their metabolism. Furthermore, hypoxia is known to change cell behavior and is associated with extracellular matrix remodeling and increased migratory and metastatic behavior.
Screening methods are mostly done for females to determine if they are carriers. Males do not have to be tested because those with the disorder will show symptoms close to the time they are born because the disorder is inherited from the X chromosome. Female can be tested if they are carriers by performing a X chromosome inactivation analysis on DNA isolated from the peripheral lymphocytes. The CAG repeat in this section must be amplified and methylated DNA must be sorted from unmethylated DNA with PCR. Carrier females will show skewed X-inactivation pattern (skewing close to 100%) with the mutated allele inactivated. This indicates a selection against cells with an active X chromosome with the mutated HDAC8 gene.
The most commonly described underlying cause of superficial siderosis is chronic bleeding into the subarachnoid space of the brain, which releases erythrocytes, or blood cells, into the cerebrospinal fluid. The chronic bleeding can come from many sources such as from an arteriovenous malformation or cavernous malformation, myxopapillary ependymoma of the spinal cord, from chronic subdural hematoma, from a ventricular shunt, or from chronic subarachnoid hemorrhage. Chronic bleeding sources can also be a result of past brain surgery or CNS trauma, which may be the most common cause of superficial siderosis, with superficial siderosis showing up many years later. In up to as many as half of all described cases the source of bleeding was never found.
There is no current cure for superficial siderosis, only treatments to help alleviate the current symptoms and to help prevent the development of further symptoms. If a source of bleeding can be identified (sources are frequently not found), then surgical correction of the bleeding source can be performed; this has proved to be effective in halting the development of further symptoms in some cases and has no effect on symptoms that have already presented.
Patients with superficial siderosis are often treated with deferiprone, a lipid-soluble iron chelator, as this medication has been demonstrated to chelate iron in the central nervous system.
While on this drug you will need a frequent blood test (weekly) to keep an eye on the blood levels as this drug is known to lower certain blood levels such as the neutrophils and WBC (white blood count) and etc. While it is ok if these levels go low in the average person, if they go low while taking Deferiprone Ferriprox it can cause life threatening infections that can result in death.
Alleviation of the most common symptom, hearing loss, has been varyingly successful through the use of cochlear implants. Most people do not notice a large improvement after successful implantation, which is most likely due to damage to the vestibulocochlear nerve (cranial nerve VIII) and not the cochlea itself. Some people fare far better, with a return to near normal hearing, but there is little ability to detect how well a person will respond to this treatment at this time.
Chédiak–Higashi syndrome is a rare autosomal recessive disorder that arises from a mutation of a lysosomal trafficking regulator protein, which leads to a decrease in phagocytosis. The decrease in phagocytosis results in recurrent pyogenic infections, albinism and peripheral neuropathy. It occurs in humans, cattle, blue Persian cats, Australian blue rats, mice, mink, foxes, and the only known captive white orca.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
Three main support groups of this syndrome are the ASGA in Australia, The Association for Children with Genetic Disorders in Poland, and the Association of People of Genetic Disorders in Greece.
Cystic fibrosis transmembrane conductance regulator has been shown to interact with:
- DNAJC5,
- GOPC,
- PDZK1,
- PRKCE,
- SLC4A8,
- SNAP23,
- SLC9A3R1,
- SLC9A3R2, and
- STX1A,
It is inhibited by the anti-diarrhoea drug crofelemer.
Vici syndrome is inherited in an autosomal recessive manner. This means the defective gene responsible for the disorder is located on an autosome, and two copies of the defective gene (one inherited from each parent) are required in order to be born with the disorder. The parents of an individual with an autosomal recessive disorder both carry one copy of the defective gene, but usually do not experience any signs or symptoms of the disorder.
The hypothesis of autosomal recessive inheritance of Vici syndrome was strengthened in 2002 with the clinical description of two new cases, one brother and one sister, by Chiyonobu et al.
The cytogenetic location is 7q36 and genomic coordinates are GRCh37:147,900,000 - 159,138,663 (NCBI). Mapping of this syndrome was done by Dundar and coworkers in 2001. They showed that this phenotype was linked to a 6.4-cM region of 7q36 flanked by the EN2 gene and the marker D7S2423. Dundar and coworkers characterized and mapped acropectoral syndrome and also showed it was unrelated to acropectorovertebral syndrome. The mapping showed that the acropectoral locus was in a region where preaxial polydactyly and triphalangeal thumb-polysyndactyly had previously been mapped. This study was important because it expanded the range of phenotypes that are connected to this locus. Previously, preaxial polydactyly and sternal defects have been linked to expression of the gene Sonic hedgehog Shh in limbbud and lateral plate mesoderm during development in mice. Dundar and coworkers found that the LMBR1 gene links to pre axial polydactyly. This gene encodes for a new transmembrane receptor and it is proposed that this receptor is an upstream regulator of SHH.
At this time there is no treatment for transaldolase deficiency.
There is currently research being done to find treatments for transaldolase deficiency. A study done in 2009 used orally administered N-acetylcysteine on transaldolase deficient mice and it prevented the symptoms associated with the disease. N-acetylcysteine is a precursor for reduced glutathione, which is decreased in transaldolase deficient patients.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
There is no known curative treatment presently. Hearing aids and cataract surgery may be of use. Control of seizures, heart failure and treatment of infection is important. Tube feeding may be needed.
Assisted reproductive technology (ART) is a general term referring to methods used to achieve pregnancy by artificial or partially artificial means. According to the CDC, in general, ART procedures involve surgically removing eggs from a woman's ovaries, combining them with sperm in the laboratory, and returning them to the woman's body or donating them to another woman. ART has been associated with epigenetic syndromes, specifically BWS and Angelman syndrome. Three groups have shown an increased rate of ART conception in children with BWS. A retrospective case control study from Australia found a 1 in 4000 risk of BWS in their in-vitro population, several times higher than the general population. Another study found that children conceived by in vitro fertilisation (IVF) are three to four times more likely to develop the condition. No specific type of ART has been more closely associated with BWS. The mechanism by which ART produces this effect is still under investigation.
Autoimmune polyendocrine syndrome type 1 is a condition caused in an autosomal recessive manner. Furthermore, it is due to a defect in AIRE gene (which helps to make a protein that is called the autoimmune regulator) mapped to 21q22.3 chromosome location, hence chromosome 21.
IPEX (immunodysregulation polyendocrinopathy enteropathy X-linked) syndrome is a rare disease linked to the dysfunction of the transcription factor FOXP3, widely considered to be the master regulator of the regulatory T cell lineage. It leads to the dysfunction of regulatory T-cells and the subsequent autoimmunity. The disorder manifests with autoimmune enteropathy, psoriasiform or eczematous dermatitis, nail dystrophy, autoimmune endocrinopathies, and autoimmune skin conditions such as alopecia universalis and bullous pemphigoid.
Management for immunodysregulation polyendocrinopathy enteropathy X-linked syndrome has seen limited success in treating the syndrome by bone marrow transplantation.
There is no specific treatment for Chédiak–Higashi syndrome. Bone marrow transplants appear to have been successful in several patients. Infections are treated with antibiotics and abscesses are surgically drained when appropriate. Antiviral drugs such as acyclovir have been tried during the
terminal phase of the disease. Cyclophosphamide and prednisone have been tried. Vitamin C therapy has improved immune function and clotting in some patients.
Autoimmune polyendocrine syndrome type 1 (APS-1), also known as autoimmune polyendocrinopathy-candidiasis–ectodermal dystrophy/dysplasia (APECED), autoimmune polyglandular syndrome type 1, Whitaker syndrome, or candidiasis-hypoparathyroidism–Addison's disease syndrome, is a subtype of autoimmune polyendocrine syndrome (autoimmune polyglandular syndrome) in which multiple endocrine glands dysfunction as a result of autoimmunity. It is a genetic disorder inherited in autosomal recessive fashion due to a defect in the "AIRE" gene (autoimmune regulator), which is located on chromosome 21 and normally confers immune tolerance.
NF-1 is a progressive and diverse condition, making the prognosis difficult to predict. The NF-1 gene mutations manifest the disorder differently even amongst people of the same family. This phenomenon is called variable expressivity. For example, some individuals have no symptoms, while others may have a manifestation that is rapidly more progressive and severe.
For many NF-1 patients, a primary concern is the disfigurement caused by cutaneous/dermal neurofibromas, pigmented lesions, and the occasional limb abnormalities. However, there are many more severe complications caused by NF-1, although most of them are quite rare. Many NF patients live perfectly normal and uninterrupted lives.