Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Reversal of symptoms have been reported in between 15% to 22% of cases. The causes of this reversal are still under investigation but have been reported in both males and females.
Reversal appears to be associated with 14 of the known gene defects linked to KS/CHH. The study suggests no obvious gene defect showing a tendency to allow reversal. There is a suggestion that the TAC3 and TACR3 mutations might allow for a slightly higher chance of reversal, but the numbers involved are too low to confirm this. The ANOS1 mutations appear to be least likely to allow reversal with to date only one recorded instance in medical literature. Even male patients who previous had micro-phallus or cryptorchidism have been shown to undergo reversal of symptoms.
The reversal might not be permanent and remission can occur at any stage; the paper suggests that this could be linked to stress levels. The paper highlighted a reversal case that went into remission but subsequently achieved reversal again, strongly suggesting an environmental link.
Reversal cases have been seen in cases of both KS and normosmic CHH but appear to be less common in cases of KS (where the sense of smell is also affected). A paper published in 2016 agreed with the theory that there is a strong environmental or epigenetic link to the reversal cases. The precise mechanism of reversal is unclear and is an area of active research.
Reversal would be apparent if testicular development was seen in men while on testosterone therapy alone or in women who menstruate or achieved pregnancy while on no treatment. To date there have been no recorded cases of the reversal of anosmia found in Kallmann syndrome cases.
The condition affects only those with a Y-chromosome because dihydrotestosterone (DHT) has no known role in development of XX fetuses.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
Nearly all mammals display sex-dimorphic reproductive and sexual behavior (e.g., lordosis and mounting in rodents). Much research has made it clear that prenatal and early postnatal androgens play a role in the differentiation of most mammalian brains. Experimental manipulation of androgen levels in utero or shortly after birth can alter adult reproductive behavior.
Girls and women with CAH constitute the majority of genetic females with normal internal reproductive hormones who have been exposed to male levels of testosterone throughout their prenatal lives. Milder degrees of continuing androgen exposure continue throughout childhood and adolescence as a consequence of the imperfections of current glucocorticoid treatment for CAH. The psychosexual development of these girls and women has been analyzed as evidence of the role of androgens in human sex-dimorphic behaviors.
Girls with CAH have repeatedly been reported to spend more time with "sex-atypical" toys and "rough-and-tumble" play than unaffected sisters. These differences continue into adolescent, as expressed in social behaviors, leisure activities, and career interests. Interest in babies and becoming mothers is significantly lower by most measures.
Cognitive effects are less clear, and reports have been contradictory. Two studies reported spatial abilities above the average for sisters and for girls in general. Other evidence in males with and without androgen deficiencies suggests that androgens may play a role in these aptitudes.
However, gender identity of girls and women with CAH is nearly always unequivocally female. Sexual orientation is more mixed, though the majority are heterosexual. In one study, 27% of women with CAH were rated as bisexual in their orientations. Abnormalities of body image due to the effects of the disease likely play a role in the sexual development of these women, and one cannot conclude that the androgens are the major determinant of their sexuality.
Estimates for the incidence of androgen insensitivity syndrome are based on a relatively small population size, thus are known to be imprecise. CAIS is estimated to occur in one of every 20,400 46,XY births. A nationwide survey in the Netherlands based on patients with genetic confirmation of the diagnosis estimates that the minimal incidence of CAIS is one in 99,000. The incidence of PAIS is estimated to be one in 130,000. Due to its subtle presentation, MAIS is not typically investigated except in the case of male infertility, thus its true prevalence is unknown.
The epidemiology of Kallmann's is not well understood. Individual studies include a 1986 report reviewing medical records in the Sardinian army found a prevalence of 1 in 86,000 men and a 2011 report from Finland found a prevalence of 1:30,000 for males and 1:125,000 for females.
There is 4 to 5:1 ratio of men to women among all people with Kallmann syndrome; in familial Kallmann the ratio is lower, at 2.5 to 1.
Several treatments have been found to be effective in managing AES, including aromatase inhibitors and gonadotropin-releasing hormone analogues in both sexes, androgen replacement therapy with non-aromatizable androgens such as DHT in males, and progestogens (which, by virtue of their antigonadotropic properties at high doses, suppress estrogen levels) in females. In addition, male patients often seek bilateral mastectomy, whereas females may opt for breast reduction if warranted.
Medical treatment of AES is not absolutely necessary, but it is recommended as the condition, if left untreated, may lead to excessively large breasts (which may necessitate surgical reduction), problems with fertility, and an increased risk of endometriosis and estrogen-dependent cancers such as breast and endometrial cancers later in life. At least one case of male breast cancer has been reported.
5α-Reductase is an enzyme that converts testosterone to 5α-dihydrotestosterone (DHT) in peripheral tissues. These enzymes also participate in the creation of such neurosteroids as allopregnanolone and THDOC, convert progesterone into dihydroprogesterone (DHP), and convert deoxycorticosterone (DOC) into dihydrodeoxycorticosterone (DHDOC). 5-ARD is biochemically characterized by low to low-normal levels of testosterone and decreased levels of DHT, creating a higher testosterone/DHT ratio.
DHT is a potent androgen, and is necessary for the development of male external genitalia in utero.
While hyperandrogenism in women is caused by external factors, it can also appear from natural causes.
The root cause of AES is not entirely clear, but it has been elucidated that inheritable, autosomal dominant genetic mutations affecting "CYP19A1", the gene which encodes aromatase, are involved in its etiology. Different mutations are associated with differential severity of symptoms, such as mild to severe gynecomastia.
The 2006 Consensus statement on the management of intersex disorders states that individuals with 17β-hydroxysteroid dehydrogenase III deficiency have an intermediate risk of germ cell malignancy, at 28%, recommending that gonads be monitored. A 2010 review put the risk of germ cell tumors at 17%.
The management of 17β-hydroxysteroid dehydrogenase III deficiency can consist, according to one source, of the elimination of gonads prior to puberty, in turn halting masculinization.
Hewitt and Warne state that, children with 17β-hydroxysteroid dehydrogenase III deficiency who are raised as girls often later identify as male, describing a "well known, spontaneous change of gender identity from female to male" that "occurs after the onset of puberty." A 2005 systematic review of gender role change identified the rate of gender role change as occurring in 39–64% of individuals with 17β-hydroxysteroid dehydrogenase III deficiency raised as girls.
Challenges presented to people affected by this condition include: psychologically coming to terms with the condition, difficulties with sexual function, infertility. Long-term studies indicate that with appropriate medical and psychological treatment, women with CAIS can be satisfied with their sexual function and psychosexual development. CAIS women can lead active lives and expect a normal lifespan.
All forms of androgen insensitivity are associated with infertility, though exceptions have been reported for both the mild and partial forms. Lifespan is not thought to be affected by AIS.
Individuals with CAIS are raised as females. They are born phenotypically female and almost always have a heterosexual female gender identity; the incidence of homosexuality in women with CAIS is thought to be less than unaffected women. However, at least two case studies have reported male gender identity in individuals with CAIS.
Even though hyperandrogenism is not common in men, there has been studies done to look at the effects of high levels of testosterone in male bodies. A study have shown that even though many of the male participates did not have a behavior changes due to the increased levels of testosterone, there were cases where the participants had instances of uncharacteristic aggression. High levels of testosterone in male has not been seen to have a direct impact on their personality, but within those studies, there have been cases of sudden aggression within the male participants.
Gonadectomy at time of diagnosis is the current recommendation for PAIS if presenting with cryptorchidism, due to the high (50%) risk of germ cell malignancy. The risk of malignancy when testes are located intrascrotally is unknown; the current recommendation is to biopsy the testes at puberty, allowing investigation of at least 30 seminiferous tubules, with diagnosis preferably based on OCT3/4 immunohistochemistry, followed by regular examinations. Hormone replacement therapy is required after gonadectomy, and should be modulated over time to replicate the hormone levels naturally present in the body during the various stages of puberty. Artificially induced puberty results in the same, normal development of secondary sexual characteristics, growth spurt, and bone mineral accumulation. Women with PAIS may have a tendency towards bone mineralization deficiency, although this increase is thought to be less than is typically seen in CAIS, and is similarly managed.
Depending on the mutation, a person with a 46,XY karyotype and AIS can have either a male (MAIS) or female (CAIS) phenotype, or may have genitalia that are only partially masculinized (PAIS). The gonads are testes regardless of phenotype due to the influence of the Y chromosome. A 46,XY female, thus, does not have ovaries or a uterus, and can neither contribute an egg towards conception nor gestate a child.
Several case studies of fertile 46,XY males with AIS have been published, although this group is thought to be a minority. Additionally, some infertile males with MAIS have been able to conceive children after increasing their sperm count through the use of supplementary testosterone. A genetic male conceived by a man with AIS would not receive his father's X chromosome, thus would neither inherit nor carry the gene for the syndrome. A genetic female conceived in such a way would receive her father's X chromosome, thus would become a carrier.
Males and females may be treated with hormone replacement therapy (i.e., with androgens and estrogens, respectively), which will result in normal sexual development and resolve most symptoms. In the case of 46,XY (genetically male) individuals who are phenotypically female and/or identify as the female gender, they should be treated with estrogens instead. Removal of the undescended testes should be performed in 46,XY females to prevent their malignant degeneration, whereas in 46,XY males surgical correction of the genitals is generally required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well. Namely in genetic females presenting with ovarian cysts, GnRH analogues may be used to control high FSH and LH levels if they are unresponsive to estrogens.
Approximately 1 in 20,000 individuals with a male appearance have 46,XX testicular disorder.
The androgen receptor gene contains two polymorphic trinucleotide microsatellites in exon 1. The first microsatellite (nearest the 5' end) contains 8 to 60 repetitions of the glutamine codon "CAG" and is thus known as the polyglutamine tract. The second microsatellite contains 4 to 31 repetitions of the glycine codon "GGC" and is known as the polyglycine tract. The average number of repetitions varies by ethnicity, with Caucasians exhibiting an average of 21 CAG repeats, and Blacks 18. Disease states are associated with extremes in polyglutamine tract length; prostate cancer, hepatocellular carcinoma, and mental retardation are associated with too few repetitions, while spinal and bulbar muscular atrophy (SBMA) is associated with a CAG repetition length of 40 or more. Some studies indicate that the length of the polyglutamine tract is inversely correlated with transcriptional activity in the AR protein, and that longer polyglutamine tracts may be associated with infertility and undermasculinized genitalia. However, other studies have indicated that no such correlation exists. A comprehensive meta-analysis of the subject published in 2007 supports the existence of the correlation, and concluded that these discrepancies could be resolved when sample size and study design are taken into account. Longer polyglycine tract lengths have also been associated with genital masculinization defects in some, but not all, studies.
Isolated 17,20-lyase deficiency (ILD), also called isolated 17,20-desmolase deficiency, is a rare endocrine and autosomal recessive genetic disorder which is characterized by a complete or partial loss of 17,20-lyase activity and, in turn, impaired production of the androgen and estrogen sex steroids. The condition manifests itself as pseudohermaphroditism (partially or fully underdeveloped genitalia) in males, in whom it is considered to be a form of intersex, and, in both sexes, as a reduced or absent puberty/lack of development of secondary sexual characteristics, resulting in a somewhat childlike appearance in adulthood (if left untreated).
Unlike the case of combined 17α-hydroxylase/17,20-lyase deficiency, isolated 17,20-lyase deficiency does not affect glucocorticoid production (or mineralocorticoid levels), and for that reason, does not result in adrenal hyperplasia or hypertension.
In 2013, an 18-year-old woman with EIS was reported. DNA sequencing revealed a homozygous mutation in ESR1, the gene that encodes the ERα. Within the ligand-binding domain, the neutral polar glutamine 375 was changed to a basic, polar histidine. An "in vitro" assay of ERα-dependent gene transcription found that the EC for transactivation had been reduced by 240-fold relative to normal, non-mutated ERα, indicating an extreme reduction in the activity of the receptor. Clinical signs suggested a profile of complete estrogen insensitivity syndrome with a resemblance to ERα knockout mice. The patient presented with delayed puberty, including an absence of breast development (Tanner stage I) and primary amenorrhea, as well as intermittent pelvic pain. Examination revealed markedly enlarged ovaries with multiple hemorrhagic cysts as the cause of the lower abdominal pain.
Estrogen levels were dramatically and persistently elevated (estradiol levels were 2340 pg/mL, regarded as being about 10 times the normal level, and ranged from 750–3500 pg/mL), gonadotropin levels were mildly elevated (follicle-stimulating hormone and luteinizing hormone levels were 6.7–19.1 mIU/mL and 5.8–13.2 mIU/mL, respectively), and testosterone levels were slightly elevated (33–88 ng/dL). Inhibin A levels were also markedly elevated. Sex hormone-binding globulin, corticosteroid-binding globulin, thyroxine-binding globulin, prolactin, and triglycerides, which are known to be elevated by estrogen, were all within normal ranges in spite of the extremely high levels of estrogen, and inhibin B levels were also normal. Her relatively mildly elevated levels of gonadotropins were attributed to retained negative feedback by progesterone as well as by her elevated levels of testosterone and inhibin A, although it was acknowledged that possible effects of estrogen mediated by other receptors such as ERβ could not be excluded.
The patient had a small uterus, with an endometrial stripe that could not be clearly identified. At the age of 15 years, 5 months, her bone age was 11 or 12 years, and at the age of 17 years, 8 months, her bone age was 13.5 years. Her bone mass was lower than expected for her age, and levels of osteocalcin and C-terminal telopeptide were both elevated, suggesting an increased rate of bone turnover. She was 162.6 cm tall, and her growth velocity indicated a lack of estrogen-induced growth spurt at puberty. The patient had normal pubic hair development (Tanner stage IV) and severe facial acne, which could both be attributed to testosterone. Her ovarian pathology was attributed to the elevated levels of gonadotropins. In addition to her absence of breast development and areolar enlargement, the patient also appeared to show minimal widening of the hips and a lack of subcutaneous fat deposition, which is in accordance with the established role of estrogen and ERα in the development of female secondary sexual characteristics.
Treatment of the patient with conjugated equine estrogens and high doses of estradiol had no effect. Although the authors of the paper considered her ERα to be essentially unresponsive to estrogen, they stated that they "[could not] exclude the possibility that some residual estrogen sensitivity could be present in some tissues", which is in accordance with the fact that the EC of her ERα had been reduced 240-fold but had not been abolished. Treatment with a progestin, norethisterone, reduced her estradiol concentrations to normal levels and decreased the size of her ovaries and the number of ovarian cysts, alleviating her hypothalamic-pituitary-gonadal axis hyperactivity and ovarian pathology.
In about 80 percent of individuals with 46,XX testicular disorder of sex development, the condition results from an abnormal exchange of genetic material between chromosomes (translocation). This exchange occurs as a random event during the formation of sperm cells in the affected person's father. The translocation causes the SRY gene to be misplaced, almost always onto an X chromosome. If a fetus is conceived from a sperm cell with an X chromosome bearing the SRY gene, it will develop as a male despite not having a Y chromosome. This form of the condition is called SRY-positive 46,XX testicular disorder of sex development.
About 20 percent of those with 46 XX testicular disorder of sex development do not have the SRY gene. This form of the condition is called SRY-negative 46,XX testicular disorder of sex development. The cause of the disorder in these individuals is often unknown, although changes affecting other genes have been identified. Individuals with SRY-negative 46,XX testicular disorder of sex development are more likely to have ambiguous genitalia than are people with the SRY-positive form.
Management of AIS is currently limited to symptomatic management; methods to correct a malfunctioning androgen receptor protein that result from an AR gene mutation are not currently available. Areas of management include sex assignment, genitoplasty, gonadectomy in relation to tumor risk, hormone replacement therapy, and genetic and psychological counseling.
During embryogenesis, without any external influences for or against, the human reproductive system is intrinsically conditioned to give rise to a female reproductive organisation.
As a result, if a gonad cannot express its sexual identity via its hormones—as in gonadal dysgenesis—then the affected person, no matter whether their chromosomes are XY or XX, will develop external female genitalia. Internal female genitalia, primarily the uterus, may or may not be present depending on the cause of the disorder.
In both sexes, the commencement and progression of puberty require functional gonads that will work in harmony with the hypothalamic and pituitary glands to produce adequate hormones.
For this reason, in gonadal dysgenesis the accompanying hormonal failure also prevents the development of secondary sex characteristics in either sex, resulting in a sexually infantile female appearance and infertility.