Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
While hyperandrogenism in women is caused by external factors, it can also appear from natural causes.
Even though hyperandrogenism is not common in men, there has been studies done to look at the effects of high levels of testosterone in male bodies. A study have shown that even though many of the male participates did not have a behavior changes due to the increased levels of testosterone, there were cases where the participants had instances of uncharacteristic aggression. High levels of testosterone in male has not been seen to have a direct impact on their personality, but within those studies, there have been cases of sudden aggression within the male participants.
Several treatments have been found to be effective in managing AES, including aromatase inhibitors and gonadotropin-releasing hormone analogues in both sexes, androgen replacement therapy with non-aromatizable androgens such as DHT in males, and progestogens (which, by virtue of their antigonadotropic properties at high doses, suppress estrogen levels) in females. In addition, male patients often seek bilateral mastectomy, whereas females may opt for breast reduction if warranted.
Medical treatment of AES is not absolutely necessary, but it is recommended as the condition, if left untreated, may lead to excessively large breasts (which may necessitate surgical reduction), problems with fertility, and an increased risk of endometriosis and estrogen-dependent cancers such as breast and endometrial cancers later in life. At least one case of male breast cancer has been reported.
The root cause of AES is not entirely clear, but it has been elucidated that inheritable, autosomal dominant genetic mutations affecting "CYP19A1", the gene which encodes aromatase, are involved in its etiology. Different mutations are associated with differential severity of symptoms, such as mild to severe gynecomastia.
Nearly all mammals display sex-dimorphic reproductive and sexual behavior (e.g., lordosis and mounting in rodents). Much research has made it clear that prenatal and early postnatal androgens play a role in the differentiation of most mammalian brains. Experimental manipulation of androgen levels in utero or shortly after birth can alter adult reproductive behavior.
Girls and women with CAH constitute the majority of genetic females with normal internal reproductive hormones who have been exposed to male levels of testosterone throughout their prenatal lives. Milder degrees of continuing androgen exposure continue throughout childhood and adolescence as a consequence of the imperfections of current glucocorticoid treatment for CAH. The psychosexual development of these girls and women has been analyzed as evidence of the role of androgens in human sex-dimorphic behaviors.
Girls with CAH have repeatedly been reported to spend more time with "sex-atypical" toys and "rough-and-tumble" play than unaffected sisters. These differences continue into adolescent, as expressed in social behaviors, leisure activities, and career interests. Interest in babies and becoming mothers is significantly lower by most measures.
Cognitive effects are less clear, and reports have been contradictory. Two studies reported spatial abilities above the average for sisters and for girls in general. Other evidence in males with and without androgen deficiencies suggests that androgens may play a role in these aptitudes.
However, gender identity of girls and women with CAH is nearly always unequivocally female. Sexual orientation is more mixed, though the majority are heterosexual. In one study, 27% of women with CAH were rated as bisexual in their orientations. Abnormalities of body image due to the effects of the disease likely play a role in the sexual development of these women, and one cannot conclude that the androgens are the major determinant of their sexuality.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
Early puberty is believed to put girls at higher risk of sexual abuse, unrelated to pedophilia because the child has developed secondary sex characteristics; however, a causal relationship is, as yet, inconclusive. Early puberty also puts girls at a higher risk for teasing or bullying, mental health disorders and short stature as adults. Helping children control their weight is suggested to help delay puberty. Early puberty additionally puts girls at a "far greater" risk for breast cancer later in life. Girls as young as 8 are increasingly starting to menstruate, develop breasts and grow pubic and underarm hair; these "biological milestones" typically occurred only at 13 or older in the past. African-American girls are especially prone to early puberty. There are theories debating the trend of early puberty, but the exact causes are not known.
Though boys face fewer problems upon early puberty than girls, early puberty is not always positive for boys; early sexual maturation in boys can be accompanied by increased aggressiveness due to the surge of hormones that affect them. Because they appear older than their peers, pubescent boys may face increased social pressure to conform to adult norms; society may view them as more emotionally advanced, although their cognitive and social development may lag behind their appearance. Studies have shown that early maturing boys are more likely to be sexually active and are more likely to participate in risky behaviours.
Treatment of HH is usually with hormone replacement therapy, consisting of androgen and estrogen administration in males and females, respectively.
Hyperestrogenism can be caused by ovarian tumors, genetic conditions such as aromatase excess syndrome (also known as familial hyperestrogenism), or overconsumption of exogenous sources of estrogen, including medications used in hormone replacement therapy and hormonal contraception. Liver cirrhosis is another cause, though through lowered metabolism of estrogen, not oversecretion or overconsumption like the aforementioned.
Hypoandrogenism is caused primarily by either dysfunction, failure, or absence of the gonads ("hypergonadotropic") or impairment of the hypothalamus or pituitary gland ("hypogonadotropic"), which in turn can be caused by a multitude of different stimuli, including genetic conditions (e.g., GnRH/gonadotropin insensitivity and enzymatic defects of steroidogenesis), tumors, trauma, surgery, autoimmunity, radiation, infections, toxins, drugs, and many others. Alternatively, it may be the result of conditions such as androgen insensitivity syndrome or hyperestrogenism. More simply, old age may also be a factor in the development of hypoandrogenism, as androgen levels decline with age.
Treatment may consist of hormone replacement therapy with androgens in either sex. Alternatively, gonadotropin-releasing hormone (GnRH)/GnRH agonists or gonadotropins may be given (in the case of "hypogonadotropic" hypoandrogenism). The Food and Drug Administration (FDA) stated in 2015 that neither the benefits nor the safety of testosterone have been established for low testosterone levels due to aging. The FDA has required that testosterone pharmaceutical labels include warning information about the possibility of an increased risk of heart attacks and stroke.
In 2013, an 18-year-old woman with EIS was reported. DNA sequencing revealed a homozygous mutation in ESR1, the gene that encodes the ERα. Within the ligand-binding domain, the neutral polar glutamine 375 was changed to a basic, polar histidine. An "in vitro" assay of ERα-dependent gene transcription found that the EC for transactivation had been reduced by 240-fold relative to normal, non-mutated ERα, indicating an extreme reduction in the activity of the receptor. Clinical signs suggested a profile of complete estrogen insensitivity syndrome with a resemblance to ERα knockout mice. The patient presented with delayed puberty, including an absence of breast development (Tanner stage I) and primary amenorrhea, as well as intermittent pelvic pain. Examination revealed markedly enlarged ovaries with multiple hemorrhagic cysts as the cause of the lower abdominal pain.
Estrogen levels were dramatically and persistently elevated (estradiol levels were 2340 pg/mL, regarded as being about 10 times the normal level, and ranged from 750–3500 pg/mL), gonadotropin levels were mildly elevated (follicle-stimulating hormone and luteinizing hormone levels were 6.7–19.1 mIU/mL and 5.8–13.2 mIU/mL, respectively), and testosterone levels were slightly elevated (33–88 ng/dL). Inhibin A levels were also markedly elevated. Sex hormone-binding globulin, corticosteroid-binding globulin, thyroxine-binding globulin, prolactin, and triglycerides, which are known to be elevated by estrogen, were all within normal ranges in spite of the extremely high levels of estrogen, and inhibin B levels were also normal. Her relatively mildly elevated levels of gonadotropins were attributed to retained negative feedback by progesterone as well as by her elevated levels of testosterone and inhibin A, although it was acknowledged that possible effects of estrogen mediated by other receptors such as ERβ could not be excluded.
The patient had a small uterus, with an endometrial stripe that could not be clearly identified. At the age of 15 years, 5 months, her bone age was 11 or 12 years, and at the age of 17 years, 8 months, her bone age was 13.5 years. Her bone mass was lower than expected for her age, and levels of osteocalcin and C-terminal telopeptide were both elevated, suggesting an increased rate of bone turnover. She was 162.6 cm tall, and her growth velocity indicated a lack of estrogen-induced growth spurt at puberty. The patient had normal pubic hair development (Tanner stage IV) and severe facial acne, which could both be attributed to testosterone. Her ovarian pathology was attributed to the elevated levels of gonadotropins. In addition to her absence of breast development and areolar enlargement, the patient also appeared to show minimal widening of the hips and a lack of subcutaneous fat deposition, which is in accordance with the established role of estrogen and ERα in the development of female secondary sexual characteristics.
Treatment of the patient with conjugated equine estrogens and high doses of estradiol had no effect. Although the authors of the paper considered her ERα to be essentially unresponsive to estrogen, they stated that they "[could not] exclude the possibility that some residual estrogen sensitivity could be present in some tissues", which is in accordance with the fact that the EC of her ERα had been reduced 240-fold but had not been abolished. Treatment with a progestin, norethisterone, reduced her estradiol concentrations to normal levels and decreased the size of her ovaries and the number of ovarian cysts, alleviating her hypothalamic-pituitary-gonadal axis hyperactivity and ovarian pathology.
Hirsutism can be caused by either an increased level of androgens, the male hormones, or an oversensitivity of hair follicles to androgens. Male hormones such as testosterone stimulate hair growth, increase size and intensify the growth and pigmentation of hair. Other symptoms associated with a high level of male hormones include acne, deepening of the voice, and increased muscle mass. The condition is called hyperandrogenism.
Growing evidence implicates high circulating levels of insulin in women for the development of hirsutism. This theory is speculated to be consistent with the observation that obese (and thus presumably insulin resistant hyperinsulinemic) women are at high risk of becoming hirsute. Further, treatments that lower insulin levels will lead to a reduction in hirsutism.
It is speculated that insulin, at high enough concentration, stimulates the ovarian theca cells to produce androgens. There may also be an effect of high levels of insulin to activate insulin-like growth factor 1 (IGF-1) receptor in those same cells. Again, the result is increased androgen production.
Signs that are suggestive of an androgen-secreting tumor in a patient with hirsutism is rapid onset, virilization and palpable abdominal mass.
The following are conditions and situations that have been associated with hyperandrogenism and hence hirsutism in women:
- Hyperinsulinemia (insulin excess) or hypoinsulinemia (insulin deficiency or resistance as in diabetes).
- Ovarian cysts such as in polycystic ovary syndrome (PCOS), the most common cause in women.
- Ovarian tumors such as granulosa tumors, thecomas, Sertoli–Leydig cell tumors (androblastomas), and gynandroblastomas, as well as ovarian cancer.
- Hyperthecosis.
- Pregnancy.
- Adrenal gland tumors, adrenocortical adenomas, and adrenocortical carcinoma, as well as adrenal hyperplasia due to pituitary adenomas (as in Cushing's syndrome).
- hCG-secreting tumors
- Inborn errors of steroid metabolism such as in congenital adrenal hyperplasia, most commonly caused by 21-hydroxylase deficiency.
- Acromegaly and gigantism (growth hormone and IGF-1 excess), usually due to pituitary tumors.
- Use of certain medications such as androgens/anabolic steroids, phenytoin, and minoxidil.
Causes of hirsutism not related to hyperandrogenism include:
- Porphyria cutanea tarda.
- Minoxidil
During pregnancy, the placenta, which is fetal tissue, synthesizes large amounts of estrogen. The levels of estrogen in the mother can elevate 100-fold higher than normal cycling levels. In fetal aromatase deficiency, the placenta synthesizes the intermediates in the biosynthesis of the estrogens, androstenedione and testosterone, but cannot convert them the rest of the way due to the absence of aromatase. These compounds, which are androgens, subsequently accumulate to high levels and circulate, severely masculinizing both the fetus and the mother. The mother will experience cystic acne, hirsutism, deepening of the voice, and clitoromegaly, which will partially reverse following parturition. The fetus, if female, will be born with severely masculinized external genitalia, including labioscrotal fusion and a greatly enlarged phallus. A male fetus will be born with normal genitalia.
At puberty, due to the lack of aromatase, estrogens will not be synthesized by the ovaries, and normal puberty, including breast development and the onset of menses, will not occur. Instead, androgens will elevate once again above normal levels, and may cause additional virilization, such as acne, hirsutism, and further enlargement of the clitoris, unless treatment with estrogen is given.
Many causes of early puberty are somewhat unclear, though girls who have a high-fat diet and are not physically active or are obese are more likely to physically mature earlier. "Obese girls, defined as at least 10 kilograms (22 pounds) overweight, had an 80 percent chance of developing breasts before their ninth birthday and starting menstruation before age 12 – the western average for menstruation is about 12.7 years." Exposure to chemicals that mimic estrogen (known as xenoestrogens) is a possible cause of early puberty in girls. Bisphenol A, a xenoestrogen found in hard plastics, has been shown to affect sexual development. "Factors other than obesity, however, perhaps genetic and/or environmental ones, are needed to explain the higher prevalence of early puberty in black versus white girls." While more girls are increasingly entering puberty at younger ages, new research indicates that some boys are actually starting later (delayed puberty). "Increasing rates of obese and overweight children in the United States may be contributing to a later onset of puberty in boys, say researchers at the University of Michigan Health System."
High levels of beta-hCG in serum and cerebrospinal fluid observed in a 9-year-old boy suggest a pineal gland tumor. The tumor is called a "chorionic gonadotropin secreting pineal tumor". Radiotherapy and chemotherapy reduced tumor and beta-hCG levels normalized.
In a study using neonatal melatonin on rats, results suggest that elevated melatonin could be responsible for some cases of early puberty.
Familial cases of idiopathic central precocious puberty (ICPP) have been reported, leading researchers to believe there are specific genetic modulators of ICPP. Mutations in genes such as LIN28, and LEP and LEPR, which encode leptin and the leptin receptor, have been associated with precocious puberty. The association between LIN28 and puberty timing was validated experimentally in vivo, when it was found that mice with ectopic overexpression of LIN28 show an extended period of pre-pubertal growth and a significant delay in puberty onset.
Mutations in the kisspeptin (KISS1) and its receptor, KISS1R (also known as GPR54), involved in GnRH secretion and puberty onset, are also thought to be the cause for ICPP However, this is still a controversial area of research, and some investigators found no association of mutations in the LIN28 and KISS1/KISS1R genes to be the common cause underlying ICPP.
The gene MKRN3, which is a maternally imprinted gene, was first cloned by Jong et al in 1999. MKRN3 was originally named Zinc finger protein 127. It is located on human chromosome 15 on the long arm in the Prader-Willi syndrome critical region2, and has since been identified as a cause of premature sexual development or CPP. The identification of mutations in MKRN3 leading to sporadic cases of CPP has been a significant contribution to better understanding the mechanism of puberty. MKRN3 appears to act as a "brake" on the central hypothalamic-pituitary access. Thus, loss of function mutations of the protein allow early activation of the GnRH pathway and cause phenotypic CPP. Patients with a MKRN3 mutation all display the classic signs of CCP including early breast and testes development, increased bone aging and elevated hormone levels of GnRH and LH.
Aromatase deficiency in the baby can also affect the mother during gestation, with cystic acne, hirsutism, deepening of the voice, and clitoromegaly. Increased circulating testosterone levels are the cause. The mother's symptoms resolve after she gives birth.
Approximately 10–25 percent of cases are estimated to result from the use of medications. This is known as non-physiologic gynecomastia. Medications known to cause gynecomastia include ketoconazole, cimetidine, gonadotropin-releasing hormone analogues, human growth hormone, human chorionic gonadotropin, 5α-Reductase inhibitors such as finasteride and dutasteride, estrogens such as those used in transgender women and men with prostate cancer, and antiandrogens such as bicalutamide, flutamide, and spironolactone. Medications that are probably associated with gynecomastia include calcium channel blockers such as verapamil, amlodipine, and nifedipine; risperidone, olanzapine, anabolic steroids, alcohol, opioids, efavirenz, alkylating agents, and omeprazole. Certain components of personal care products such as lavender or tea tree oil and certain supplements such as dong quai and "Tribulus terrestris" have been associated with gynecomastia.
The sex steroid consequences of severe 3β-HSD CAH are unique among the congenital adrenal hyperplasias: it is the only form of CAH that can produce ambiguity in both sexes. As with 21-hydroxylase deficient CAH, the degree of severity can determine the magnitude of over- or undervirilization.
In an XX (genetically female) fetus, elevated amounts of DHEA can produce moderate virilization by conversion in the liver to testosterone. Virilization of genetic females is partial, often mild, and rarely raises assignment questions. The issues surrounding corrective surgery of the virilized female genitalia are the same as for moderate 21-hydroxylase deficiency but surgery is rarely considered desirable.
The extent to which mild 3β-HSD CAH can cause early appearance of pubic hair and other aspects of hyperandrogenism in later childhood or adolescence is unsettled. Early reports about 20 years ago suggesting that mild forms of 3β-HSD CAH comprised significant proportions of girls with premature pubic hair or older women with hirsutism have not been confirmed and it now appears that premature pubarche in childhood and hirsutism after adolescence are not common manifestations of 3β-HSD CAH.
Undervirilization of genetic males with 3β-HSD CAH occurs because synthesis of testosterone is impaired in both adrenals and testes. Although DHEA is elevated, it is a weak androgen and too little testosterone is produced in the liver to offset the deficiency of testicular testosterone. The degree of undervirilization is more variable, from mild to severe. Management issues are those of an undervirilized male with normal sensitivity to testosterone.
If the infant boy is only mildly undervirilized, the hypospadias can be surgically repaired, testes brought into the scrotum, and testosterone supplied at puberty.
Management decisions are more difficult for a moderately or severely undervirilized genetic male whose testes are in the abdomen and whose genitalia look at least as much female as male. Male sex can assigned and major reconstructive surgery done to close the midline of the perineum and move the testes into a constructed scrotum. Female sex can be assigned and the testes removed and vagina enlarged surgically. A recently advocated third choice would be to assign either sex and defer surgery to adolescence. Each approach carries its own disadvantages and risks. Children and their families are different enough that none of the courses is appropriate for all.
Treatment may consist of surgery in the case of tumors, lower doses of estrogen in the case of exogenously-mediated estrogen excess, and estrogen-suppressing medications like gonadotropin-releasing hormone analogues and progestogens. In addition, androgens may be supplemented in the case of males.
Males and females may be treated with hormone replacement therapy (i.e., with androgens and estrogens, respectively), which will result in normal sexual development and resolve most symptoms. In the case of 46,XY (genetically male) individuals who are phenotypically female and/or identify as the female gender, they should be treated with estrogens instead. Removal of the undescended testes should be performed in 46,XY females to prevent their malignant degeneration, whereas in 46,XY males surgical correction of the genitals is generally required, and, if necessary, an orchidopexy (relocation of the undescended testes to the scrotum) may be performed as well. Namely in genetic females presenting with ovarian cysts, GnRH analogues may be used to control high FSH and LH levels if they are unresponsive to estrogens.
Gynecomastia is thought to be caused by an altered ratio of estrogens to androgens mediated by an increase in estrogen production, a decrease in androgen production, or a combination of these two factors. Estrogen acts as a growth hormone to increase the size of male breast tissue. The cause of gynecomastia is unknown in around 25% of cases. Drugs are estimated to cause 10–25% of cases of gynecomastia.
Certain health problems in men such as liver disease, kidney failure or low testosterone can cause breast growth in men. Drugs and liver disease are the most common cause in adults. Other medications such as methadone, aldosterone antagonists (spironolactone and epelerenone), HIV medication, cancer chemotherapy, hormone treatment for prostate cancer, heartburn and ulcer medications, calcium channel blockers, antifungal medications such as ketoconazole, antibiotics such as metronidazole, tricyclic antidepressants such as amitriptyline, herbals such as lavender, tea tree oil, and dong quai are also known to cause gynecomastia. Phenothrin, an insecticide, possesses antiandrogen activity, and has been associated with gynecomastia.
The 2006 Consensus statement on the management of intersex disorders states that individuals with 17β-hydroxysteroid dehydrogenase III deficiency have an intermediate risk of germ cell malignancy, at 28%, recommending that gonads be monitored. A 2010 review put the risk of germ cell tumors at 17%.
The management of 17β-hydroxysteroid dehydrogenase III deficiency can consist, according to one source, of the elimination of gonads prior to puberty, in turn halting masculinization.
Hewitt and Warne state that, children with 17β-hydroxysteroid dehydrogenase III deficiency who are raised as girls often later identify as male, describing a "well known, spontaneous change of gender identity from female to male" that "occurs after the onset of puberty." A 2005 systematic review of gender role change identified the rate of gender role change as occurring in 39–64% of individuals with 17β-hydroxysteroid dehydrogenase III deficiency raised as girls.
Hirsutism affects members of any gender, since rising androgen levels can cause excessive body hair, particularly in locations where women normally do not develop terminal hair during puberty (chest, abdomen, back, and face). The medical term for excessive hair growth that affects any gender is hypertrichosis.
There are a multitude of different etiologies of HH. Congenital causes include the following:
- Chromosomal abnormalities (resulting in gonadal dysgenesis) - Turner's syndrome, Klinefelter's syndrome, Swyer's syndrome, XX gonadal dysgenesis, and mosaicism.
- Defects in the enzymes involved in the gonadal biosynthesis of the sex hormones - 17α-hydroxylase deficiency, 17,20-lyase deficiency, 17β-hydroxysteroid dehydrogenase III deficiency, and lipoid congenital adrenal hyperplasia.
- Gonadotropin resistance (e.g., due to inactivating mutations in the gonadotropin receptors) - Leydig cell hypoplasia (or insensitivity to LH) in males, FSH insensitivity in females, and LH and FSH resistance due to mutations in the "GNAS" gene (termed pseudohypoparathyroidism type 1A).
Acquired causes (due to damage to or dysfunction of the gonads) include ovarian torsion, vanishing/anorchia, orchitis, premature ovarian failure, ovarian resistance syndrome, trauma, surgery, autoimmunity, chemotherapy, radiation, infections (e.g., sexually-transmitted diseases), toxins (e.g., endocrine disruptors), and drugs (e.g., antiandrogens, opioids, alcohol).
In contrast to EIS, androgen insensitivity syndrome (AIS), a condition in which the androgen receptor (AR) is defective, is relatively common. This can be explained by the genetics of each syndrome. AIS is a X-linked recessive condition and thus carried over, by females, into future generations (although the most severe form, complete androgen insensitivity syndrome (CAIS), results in sterility, and hence cannot be passed on to offspring). EIS is not compatible with reproduction, thus each occurrence in humans would have to be a "de novo" mutation and is not transmitted to offspring.