Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Several scientists have developed murine models of SSADH (Aldh5a1-/-) by typical gene methodology to create a uniform absence of the SSADH enzyme activity as well as accumulations of GHB and GABA in tissues and physiological fluids. The mice are born at the expected Mendelian frequencies for an autosomal recessive disorder. Most of the models include distinctive neurological phenotypes and exhibit hypotonia, truncal ataxia, generalized tonic-clonic seizures associated with 100% mortality. The mice uniformly die at 3-4 postnatal weeks. While this model is considered to be more severe than the phenotypes seen in humans, currently, it is the most highly regarded, valid, metabolic model to study potential therapeutic interventions for the disorder.
Studies have shown that alterations of both the GABA receptor and the GABA receptor early in the life of the Aldh5a1-/- mice can increase levels of GHB and enhance GABA release. Besides these effects, it has also been shown that "...a developmental down-regulation of GABA receptor mediated neurotransmission in Aldh5a1-/- mice likely contributes to the progression of generalized convulsive seizures seen in mutant animals." Other studies have confirmed the relationship between elevated levels of GHB and MAP kinase in mutant animals contribute to profound myelin abnormalities.
While SSADH deficiency has been studied for nearly 30 years, knowledge of the disorder and its pathophysiology remains unclear. However, the progress that has been made with both murine and human models of the disorder have provided a lot of insights into how the disease manifests itself and what more can be done in terms of therapeutic interventions. Much of the current research into SSADH has been led by a dedicated team of physicians and scientists, including Phillip L. Pearl, MD of the Boston Children's Hospital at Harvard Medical School and K. Michael Gibson, PhD of Washington State University College of Pharmacy. Both have contributed significant efforts to finding appropriate therapies for SSADH deficiency and have specifically spent most of their recent efforts into understanding the efficacy of the ketogenic diet for patients with SSADH deficiency. In addition, a lot of the research that was published in 2007 examined the pathogenesis for the disorder by examining the role of oxidative stress on tissues in various cerebral structures of Aldh5a1-/- mice.
Ultimately, the metabolic pathway of SSADH deficiency is known, but how the enzyme deficiency and accumulation of GABA and GHB contribute to the clinical phenotype is not. For the future however, treatment strategies should focus on both decreasing the total production of GHB and increasing the total concentration of GABA and further assessing whether the effects of these changes influences the neurological manifestations seen in patients afflicted with SSADH deficiency.
Response to treatment is variable and the long-term and functional outcome is unknown. To provide a basis for improving the understanding of the epidemiology, genotype/phenotype correlation and outcome of these diseases their impact on the quality of life of patients, and for evaluating diagnostic and therapeutic strategies a patient registry was established by the noncommercial International Working Group on Neurotransmitter Related Disorders (iNTD).
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
The diagnosis of sepiapterin reductase deficiency in a patient at the age of 14 years was delayed by an earlier diagnosis of an initially unclassified form of methylmalonic aciduria at the age of 2. At that time the hypotonia and delayed development were not considered to be suggestive of a neurotransmitter defect. The clinically relevant diagnosis was only made following the onset of dystonia with diurnal variation, when the patient was a teenager. Variability in occurrence and severity of other symptoms of the condition, such as hypotonia, ataxia, tremors, spasticity, bulbar involvement, oculogyric crises, and cognitive impairment, is comparable with autosomal dominant GTPCH and tyrosine hydroxylase deficiency, which are both classified as forms of DOPA-responsive dystonia.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
Human findings provide insufficient data for developing treatments due to differences in the patients physiological and metabolic disorders thus, a suitable alternative animal model is essential in obtaining a better understanding of the SR deficiency. In this particular case, researchers used silkworms to identify and characterize mutations relating to SPR activity from an initial purified state created in the larvae of the silkworm. The researchers used genetic and biochemical approaches to demonstrate oral administration of BH and dopamine which increased the survival rates of the silkworm larvae. The results indicate that BH deficiency in silkworms leads to death in response to the lack of dopamine. This shows that silkworms can be useful insect models in additional SR deficiency research and study.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
Infant mortality is high for patients diagnosed with early onset; mortality can occur within less than 2 months, while children diagnosed with late-onset syndrome seem to have higher rates of survival. Patients suffering from a complete lesion of mut0 have not only the poorest outcome of those suffering from methylaonyl-CoA mutase deficiency, but also of all individuals suffering from any form of methylmalonic acidemia.
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in ones urine. It is either autosomal recessive or autosomal dominant.
Recent case studies in several patients presenting nonresponsive mut0 MMA with a specific mutation designated p.P86L have suggest the possibility of further subdivision in mut type MMA might exist. Though currently unclear if this is due to the specific mutation or early detection and treatment, despite complete nonresponse to cobalamin supplements, these individuals appeared to develop a largely benign and near completely asymptomatic version of MMA. Despite consistently showing elevated methylmalonic acid in the blood and urine, these individuals appeared for the large part developmentally normal.
This condition is sometimes mistaken for Reye syndrome, a severe disorder that develops in children while they appear to be recovering from viral infections such as chicken pox or flu. Most cases of Reye syndrome are associated with the use of aspirin during these viral infections.
Argininosuccinic aciduria occurs in approximately 1 in 70,000 live births. Many patients can now be detected on the newborn screen if their blood citrulline is elevated.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
Fumarase deficiency is caused by a mutation in the fumarate hydratase (FH) gene in humans, which encodes the enzyme that converts fumarate to malate in the mitochondria. Other mutant alleles of the FH gene, located on human Chromosome 1 at position 1q42.1, cause multiple cutaneous and uterine leiomyomata, hereditary leiomyomatosis and renal cell cancer. Fumarase deficiency is one of the few known deficiencies of the Krebs cycle or tricarboxylic acid cycle, the main enzymatic pathway of cellular aerobic respiration.
The condition is an autosomal recessive disorder, and it is therefore usually necessary for an affected individual to receive the mutant allele from both parents. A number of children diagnosed with the disorder have been born to parents who were first cousins. It can also be associated with uniparental isodisomy.
Without the enzymatic activity of Malonyl-CoA decarboxylase, cellular Mal-CoA increases so dramatically that at the end it is instead broken down by an unspecific short-chain acyl-CoA hydrolase, which produces malonic acid and CoA. Malonic acid is a Krebs cycle inhibitor, preventing the cells to make ATP through oxidation. In this condition, the cells, to make ATP, are forced to increase glycolysis, which produces lactic acid as a by-product. The increase of lactic and malonic acid drastically lowers blood pH, and causes both lactic and malonic aciduria (acidic urine). This condition is very rare, as fewer than 20 cases have been reported.
By 1999, only seven cases of Malonyl- CoA decarboxylase deficiency had been reported in human in Australia; however, this deficiency predominately occurs during childhood. Patients from the seven reported cases of Malonyl- CoA decarboxylase deficiency have an age range between 4 days to 13 years, and they all have the common symptom of delayed neurological development. Similar study was conducted in Netherland, and found seventeen reported cases of Malonyl- CoA decarboxylase deficiency in children age range from 8 days to 12 years.
Although we have not yet gained a clear understanding of the pathogenic mechanism of this deficiency, some researchers have suggested a brain-specific interaction between Malonyl-CoA and CTP1 enzyme which may leads to unexplained symptoms of the MCD deficiency.
Research has found that large amount of MCD are detached in the hypothalamus and cortex of the brain where high levels of lipogenic enzymes are found, indicating that MCD plays a role in lipid synthesis in the brain. Disturbed interaction between Malonyl-CoA and CPT1 may also contributed to abnormal brain development.
Malonyl-CoA decarboxylase plays an important role in the β-oxidation processes in both mitochondria and peroxisome. Some other authors have also hypothesized that it is the MCD deficiency induced inhibition of peroxisomal β-oxidation that contributes to the development delay.
Propionic acidemia is inherited in an autosomal recessive pattern and is found in about 1 in 35,000 live births in the United States. The condition appears to be more common in Saudi Arabia, with a frequency of about 1 in 3,000. The condition also appears to be common in Amish, Mennonite and other populations where inbreeding is common.
Propionic acidemia, also known as propionic aciduria, propionyl-CoA carboxylase deficiency and ketotic glycinemia, is an autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
The disorder presents in the early neonatal period with progressive encephalopathy. Death can occur quickly, due to secondary hyperammonemia, infection, cardiomyopathy, or basal ganglial stroke.
Propionic acidemia is a rare disorder that is inherited from both parents. Being autosomal recessive, neither parent shows symptoms, but both carry a defective gene responsible for this disease. It takes two faulty genes to cause PA, so there is a 1 in 4 chance for these parents to have a child with PA.
3-Methylglutaconic aciduria (MGA) is any of at least five metabolic disorders that impair the body's ability to make energy in the mitochondria. As a result of this impairment, 3-methylglutaconic acid and 3-methylglutaric acid build up and can be detected in the urine.
3-Methylglutaconic acid is an organic acid. The double carboxylic acid functions are the principal cause of the strength of this acid. 3-methylglutaconic acid can be detected by the presence of the acid function and the double connection that involves reactivity with some specific substances.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
In the world less than 1 in 1.00.000 have HIDS [5]. 200 individuals throughout the world do suffer from MVK.