Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
The long-term prognosis of Costeff syndrome is unknown, though it appears to have no effect on life expectancy at least up to the fourth decade of life. However, as mentioned previously, movement problems can often be severe enough to confine individuals to a wheelchair at an early age, and both visual acuity and spasticity tend to worsen over time.
Costeff syndrome, or 3-methylglutaconic aciduria type III, is a genetic disorder caused by mutations in the "OPA3" gene. It is typically associated with the onset of visual deterioration (optic atrophy) in early childhood followed by the development of movement problems and motor disability in later childhood, occasionally along with mild cases of cognitive deficiency. The disorder is named after Hanan Costeff, the doctor who first described the syndrome in 1989.
It has been documented, to date, in more than 120 males (see Human Tafazzin ("TAZ") Gene Mutation & Variation Database). It is believed to be severely under-diagnosed and may be estimated to occur in 1 out of approximately 300,000 births. Family members of the Barth Syndrome Foundation and its affiliates live in the US, Canada, the UK, Europe, Japan, South Africa, Kuwait, and Australia.
Barth syndrome has been predominately diagnosed in males, although by 2012 a female case had been reported.
The diagnosis of sepiapterin reductase deficiency in a patient at the age of 14 years was delayed by an earlier diagnosis of an initially unclassified form of methylmalonic aciduria at the age of 2. At that time the hypotonia and delayed development were not considered to be suggestive of a neurotransmitter defect. The clinically relevant diagnosis was only made following the onset of dystonia with diurnal variation, when the patient was a teenager. Variability in occurrence and severity of other symptoms of the condition, such as hypotonia, ataxia, tremors, spasticity, bulbar involvement, oculogyric crises, and cognitive impairment, is comparable with autosomal dominant GTPCH and tyrosine hydroxylase deficiency, which are both classified as forms of DOPA-responsive dystonia.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
Sepiapterin reductase deficiency is an inherited pediatric disorder characterized by movement problems, and most commonly displayed as a pattern of involuntary sustained muscle contractions known as dystonia. Symptoms are usually present within the first year of age, but diagnosis is delayed due to physicians lack of awareness and the specialized diagnostic procedures. Individuals with this disorder also have delayed motor skills development including sitting, crawling, and need assistance when walking. Additional symptoms of this disorder include intellectual disability, excessive sleeping, mood swings, and an abnormally small head size. SR deficiency is a very rare condition. The first case was diagnosed in 2001, and since then there have been approximately 30 reported cases. At this time, the condition seems to be treatable, but due to a lack of overall awareness and a series of atypical procedures used to diagnose this condition pose a dilemma.
Barth syndrome (BTHS), also known as 3-Methylglutaconic aciduria type II, is an X-linked genetic disorder. The disorder, which affects multiple body systems, is diagnosed almost exclusively in males. It is named after Dutch pediatric neurologist Masa Barth.
3-Methylglutaconic aciduria, seems to be most prevalent amongst the Jewish population of Iraq. However, a high concentration of one type is found in the Saguenay-Lac-Saint-Jean region of Canada. This tends to show that the disease is more frequent in insular areas where there is more chance that both parents be carriers, a higher birth rate, and higher number of congenital marriages. As all types of 3-Methylglutaconic aciduria are known to be genetic diseases and show a recessive pattern it is likely that congenital marriages where both partners are carriers increase the chance to have a baby with the condition.
One Finnish study which followed 25 cases from 18 families found that half the infants died within 3 days of birth and the other half died before 4 months of age.
The GM1 gangliosidoses (or GM1 gangliosidos"i"s) are caused by a deficiency of beta-galactosidase, with resulting abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells.
GM1 Gangliosidoses are inherited, autosomal recessive sphingolipidoses, resulting from marked deficiency of Acid Beta Galactosidase.
2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in ones urine. It is either autosomal recessive or autosomal dominant.
HDL1 is an unusual, autosomal dominant familial prion disease. Only described in one family, it is caused by an eight-octapeptide repeat insertion in the "PRNP" gene. More broadly, inherited prion diseases in general can mimic HD.
This disease is more common in women and an association with the gene FLT4 has been described. FLT4 codes for VEGFR-3, which is implicated in development of the lymphatic system.
Milroy's disease is also known as primary or hereditary lymphedema type 1A or early onset lymphedema.
It is a very rare disease with only about 200 cases reported in the medical literature. Milroy's disease is an autosomal dominant condition caused by a mutation in the FLT4 gene which encodes of the vascular endothelial growth factor receptor 3 (VEGFR-3) gene located on the long arm (q) on chromosome 5 (5q35.3).
In contrast to Milroy's disease (early onset lymphedema type 1A,) which typically has its onset of swelling and edema at birth or during early infancy, hereditary lymphedema type II, known as Meige disease, has its onset around the time of puberty. Meige disease is also an autosomal dominant disease. It has been linked to a mutations in the ‘forkhead’ family transcription factor (FOXC2) gene located on the long arm of chromosome 16 (16q24.3). About 2000 cases have been identified. A third type of hereditary lymphedema, that has an onset after the age of 35 is known as lymph-edema tarda.
Onset of late infantile GM1 is typically between ages 1 and 3 years.
Neurological symptoms include ataxia, seizures, dementia, and difficulties with speech.
GRACILE syndrome is a very rare autosomal recessive genetic disorder, one of the Finnish heritage diseases. It is caused by mutation in BCS1L gene that occurs in at least 1 out of 47,000 live births in Finnish people.
GRACILE is an acronym for growth retardation, amino aciduria (amino acids in the urine), cholestasis, iron overload, lactic acidosis, and early death. Other names for this syndrome include Finnish lethal neonatal metabolic syndrome (FLNMS); lactic acidosis, Finnish, with hepatic hemosiderosis; and Fellman syndrome.
The D2 form is rare, with symptoms including macrocephaly, cardiomyopathy, mental retardation, hypotonia, and cortical blindness. It is caused by recessive mutations in "D2HGDH" (type I) or by dominant gain-of-function mutations in "IDH2" (type II).
The Huntington's disease-like syndromes (often abbreviated as HD-like or "HDL" syndromes) are a family of inherited neurodegenerative diseases that closely resemble Huntington's disease (HD) in that they typically produce a combination of chorea, cognitive decline or dementia and behavioural or psychiatric problems.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
Stress caused by infection, fever or other demands on the body may lead to worsening of the signs and symptoms, with only partial recovery.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.
Fumarase deficiency is caused by a mutation in the fumarate hydratase (FH) gene in humans, which encodes the enzyme that converts fumarate to malate in the mitochondria. Other mutant alleles of the FH gene, located on human Chromosome 1 at position 1q42.1, cause multiple cutaneous and uterine leiomyomata, hereditary leiomyomatosis and renal cell cancer. Fumarase deficiency is one of the few known deficiencies of the Krebs cycle or tricarboxylic acid cycle, the main enzymatic pathway of cellular aerobic respiration.
The condition is an autosomal recessive disorder, and it is therefore usually necessary for an affected individual to receive the mutant allele from both parents. A number of children diagnosed with the disorder have been born to parents who were first cousins. It can also be associated with uniparental isodisomy.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
Haemochromatosis type 3 is a type of Iron overload disorder associated with deficiencies in transferrin receptor 2. It exhibits an autosomal recessive inheritance pattern.
3-Methylglutaconic aciduria (MGA) is any of at least five metabolic disorders that impair the body's ability to make energy in the mitochondria. As a result of this impairment, 3-methylglutaconic acid and 3-methylglutaric acid build up and can be detected in the urine.
3-Methylglutaconic acid is an organic acid. The double carboxylic acid functions are the principal cause of the strength of this acid. 3-methylglutaconic acid can be detected by the presence of the acid function and the double connection that involves reactivity with some specific substances.
Succinic semialdehyde dehydrogenase deficiency (SSADHD), also known as 4-hydroxybutyric aciduria or gamma-hydroxybutyric aciduria, is a rare autosomal recessive disorder of the degradation pathway of the inhibitory neurotransmitter γ-aminobutyric acid, or GABA. The disorder has been identified in approximately 350 families, with a significant proportion being consanguineous families. The first case was identified in 1981 and published in a Dutch clinical chemistry journal that highlighted a person with a number of neurological conditions such as delayed intellectual, motor, speech, and language as the most common manifestations. Later cases reported in the early 1990s began to show that hypotonia, hyporeflexia, seizures, and a nonprogressive ataxia were frequent clinical features as well.
SSADH deficiency is caused by an enzyme deficiency in GABA degradation. Under normal conditions, SSADH works with the enzyme GABA transaminase to convert GABA to succinic acid. Succinic acid can then be utilized for energy production via the Krebs cycle. However, because of the deficiency, the final intermediate of the GABA degradation pathway, succinic semialdehyde, accumulates and cannot be oxidized to succinic acid and is therefore reduced to gamma-hydroxybutyric acid (GHB) by gamma-hydroxybutyric dehydrogenase. This causes elevations in GHB and is believed to be the trademark of this disorder and cause for the neurological manifestations seen.