Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2011 review of 176 cases found that diagnoses made early in life (within a few days of birth) were associated with more severe disease and a mortality of 33%. Children diagnosed later, and who had milder symptoms, showed a lower mortality rate of ~3%.
Due to the rarity of the disease, it is hard to estimate mortality rates or life expectancy. One 2003 study which followed 88 cases receiving two different kinds of treatment found that very few persons lived beyond age 20 and none beyond age 30.
A 2006 study of 279 patients found that of those with symptoms (185, 66%), 95% had suffered an encephalopathic crises usually with following brain damage. Of the persons in the study, 49 children died and the median age of death was 6.6 years. A Kaplan-Meier analysis of the data estimated that about 50% of symptomatic cases would die by the age of 25.
That MMA can have disastrous effects on the nervous system has been long reported; however, the mechanism by which this occurs has never been determined. Published on June 15th 2015, research performed on the effects of methylmalonic acid on neurons isolated from fetal rats in an in vitro setting using a control group of neurons treated with an alternate acid of similar pH. These tests have suggested that methylmalonic acid causes decreases in cellular size and increase in the rate of cellular apoptosis in a concentration dependent manner with more extreme effects being seen at higher concentrations. Furthermore, micro-array analysis of these treated neurons have also suggested that on a epigenetic-level methylmalonic acid alters the transcription rate of 564 genes, notably including those involved in the apoptosis, p53, and MAPK signaling pathways.
3-Methylglutaconic aciduria, seems to be most prevalent amongst the Jewish population of Iraq. However, a high concentration of one type is found in the Saguenay-Lac-Saint-Jean region of Canada. This tends to show that the disease is more frequent in insular areas where there is more chance that both parents be carriers, a higher birth rate, and higher number of congenital marriages. As all types of 3-Methylglutaconic aciduria are known to be genetic diseases and show a recessive pattern it is likely that congenital marriages where both partners are carriers increase the chance to have a baby with the condition.
A 1994 study of the entire population of New South Wales (Australia) found 20 patients. Of these, 5 (25%) had died at or before 30 months of age. Of the survivors, 1 (5%) was severely disabled and the remainder had either suffered mild disability or were making normal progress in school. A 2006 Dutch study followed 155 cases and found that 27 individuals (17%) had died at an early age. Of the survivors, 24 (19%) suffered from some degree of disability, of which most were mild. All the 18 patients diagnosed neonatally were alive at the time of the follow-up.
3-Methylglutaconic aciduria (MGA) is any of at least five metabolic disorders that impair the body's ability to make energy in the mitochondria. As a result of this impairment, 3-methylglutaconic acid and 3-methylglutaric acid build up and can be detected in the urine.
3-Methylglutaconic acid is an organic acid. The double carboxylic acid functions are the principal cause of the strength of this acid. 3-methylglutaconic acid can be detected by the presence of the acid function and the double connection that involves reactivity with some specific substances.
Isovaleric acidemia is estimated to affect at least 1 in 250,000 births in the United States.
Argininosuccinic aciduria occurs in approximately 1 in 70,000 live births. Many patients can now be detected on the newborn screen if their blood citrulline is elevated.
Some individuals with glutaric acidemia have developed bleeding in the brain or eyes that could be mistaken for the effects of child abuse.
Recent case studies in several patients presenting nonresponsive mut0 MMA with a specific mutation designated p.P86L have suggest the possibility of further subdivision in mut type MMA might exist. Though currently unclear if this is due to the specific mutation or early detection and treatment, despite complete nonresponse to cobalamin supplements, these individuals appeared to develop a largely benign and near completely asymptomatic version of MMA. Despite consistently showing elevated methylmalonic acid in the blood and urine, these individuals appeared for the large part developmentally normal.
Propionic acidemia is inherited in an autosomal recessive pattern and is found in about 1 in 35,000 live births in the United States. The condition appears to be more common in Saudi Arabia, with a frequency of about 1 in 3,000. The condition also appears to be common in Amish, Mennonite and other populations where inbreeding is common.
2-hydroxyglutaric aciduria is a rare neurometabolic disorder characterized by the significantly elevated levels of hydroxyglutaric acid in ones urine. It is either autosomal recessive or autosomal dominant.
Malonyl-CoA decarboxylase deficiency (MCD), or Malonic aciduria is an autosomal-recessive metabolic disorder caused by a genetic mutation that disrupts the activity of Malonyl-Coa decarboxylase. This enzyme breaks down Malonyl-CoA (a fatty acid precursor and a fatty acid oxidation blocker) into Acetyl-CoA and carbon dioxide.
Less than 20 patients with MGA type I have been reported in the literature (Mol Genet Metab. 2011 Nov;104(3):410-3. Epub 2011 Jul 26.)
The signs and symptoms of this disorder typically appear in early childhood. Almost all affected children have delayed development. Additional signs and symptoms can include weak muscle tone (hypotonia), seizures, diarrhea, vomiting, and low blood sugar (hypoglycemia). A heart condition called cardiomyopathy, which weakens and enlarges the heart muscle, is another common feature of malonyl-CoA decarboxylase deficiency.
Some common symptoms in Malonyl-CoA decarboxylase deficiency, such as cardiomyopathy and metabolic acidosis, are triggered by the high concentrations of Malonyl-CoA in the cytoplasm. High level of Malonyl-CoA will inhibits β-oxidation of fatty acids through deactivating the carrier of fatty acyl group, CPT1, and thus, blocking fatty acids from going into the mitochondrial matrix for oxidation.
A research conducted in Netherlands has suggested that carnitine supplements and a low fat diet may help to reduce the level of malonic acid in our body.
Symptoms can be reduced through avoidance of leucine, an amino acid. Leucine is a component of most protein-rich foods; therefore, a low-protein diet is recommended. Some isolated cases of this disorder have responded to supplemental biotin; this is not altogether surprising, consider that other biotin-related genetic disorders (such as biotinidase deficiency and holocarboxylase synthetase deficiency) can be treated solely with biotin. Individuals with these multiple carboxylase disorders have the same problem with leucine catabolism as those with 3-methylcrotonyl-CoA carboxylase deficiency.
It is one of the 29 conditions currently recommended for newborn screening by the American College of Medical Genetics.
Propionic acidemia, also known as propionic aciduria, propionyl-CoA carboxylase deficiency and ketotic glycinemia, is an autosomal recessive metabolic disorder, classified as a branched-chain organic acidemia.
The disorder presents in the early neonatal period with progressive encephalopathy. Death can occur quickly, due to secondary hyperammonemia, infection, cardiomyopathy, or basal ganglial stroke.
Propionic acidemia is a rare disorder that is inherited from both parents. Being autosomal recessive, neither parent shows symptoms, but both carry a defective gene responsible for this disease. It takes two faulty genes to cause PA, so there is a 1 in 4 chance for these parents to have a child with PA.
There is a deficiency of malate in patients because fumarase enzyme can't convert fumarate into it therefore treatment is with oral malic acid which will allow the krebs cycle to continue, and eventually make ATP.
The treatment of 2-Hydroxyglutaric aciduria is based on seizure control, the prognosis depends on how severe the condition is.
The GM1 gangliosidoses (or GM1 gangliosidos"i"s) are caused by a deficiency of beta-galactosidase, with resulting abnormal storage of acidic lipid materials in cells of the central and peripheral nervous systems, but particularly in the nerve cells.
GM1 Gangliosidoses are inherited, autosomal recessive sphingolipidoses, resulting from marked deficiency of Acid Beta Galactosidase.
Onset of adult GM1 is between ages 3 and 30.
Symptoms include muscle atrophy, neurological complications that are less severe and progress at a slower rate than in other forms of the disorder, corneal clouding in some patients, and dystonia (sustained muscle contractions that cause twisting and repetitive movements or abnormal postures). Angiokeratomas may develop on the lower part of the trunk of the body. Most patients have a normal size liver and spleen.
Prenatal diagnosis is possible by measurement of Acid Beta Galactosidase in cultured amniotic cells.
Urocanic aciduria, also called urocanate hydratase deficiency or urocanase deficiency, is an autosomal recessive metabolic disorder caused by a deficiency of the enzyme urocanase. It is a secondary disorder of histidine metabolism.
MCADD is most prevalent in individuals of Northern European Caucasian descent. The incidence in Northern Germany is 1:4000, currently the highest in the world. Northern Europe is also the origin of the common mutation in MCADD. For populations without origins in Northern Europe, the incidence is significantly lower, 1:51,000 in Japan and 1:700,000 in Taiwan. The common mutation has not been identified in MCADD cases identified in Asian populations.