Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Whether MTHFR deficiency has any effect at all on all-cause mortality is unclear. One Dutch study showed that the MTHFR mutation was more prevalent in younger individuals (36% relative to 30%), and found that elderly men with MTHFR had an elevated mortality rate, attributable to cancer. Among women, however, no difference in life expectancy was seen. More recently, however, a meta-analysis has shown that overall cancer rates are barely increased with an odds ratio of 1.07, which suggests that an impact on mortality from cancer is small or zero.
Since the essential pathology is due to the inability to absorb vitamin B from the bowels, the solution is therefore injection of IV vitamin B. Timing is essential, as some of the side effects of vitamin B deficiency are reversible (such as RBC indices, peripheral RBC smear findings such as hypersegmented neutrophils, or even high levels of methylmalonyl CoA), but some side effects are irreversible as they are of a neurological source (such as tabes dorsalis, and peripheral neuropathy). High suspicion should be exercised when a neonate, or a pediatric patient presents with anemia, proteinuria, sufficient vitamin B dietary intake, and no signs of pernicious anemia.
This is a rare disease with prevalence about 1 in 200,000 to 1 in 600,000. Studies showed that mutations in "CUBN" or "AMN" clustered particularly in the Scandinavian countries and the Eastern Mediterranean regions. Founder effect, higher clinical awareness to IGS, and
frequent consanguineous marriages all play a role in the higher prevalence of IGS among these populations
The prevalence of 677T homozygozity varies with race. 18-21% of Hispanics and Southern Mediterranean populations have this variant, as do 6-14% of North American Caucasians and <2% of Blacks living outside of Africa.
The prevalence of the 1298C mutation is lower, at 4-12% for most tested populations.
A study in 2000 had identified only 24 cases of severe MTHFR deficiency (from nonsense mutations) across the whole world.
Hypermethioninemia is an excess of the amino acid methionine, in the blood. This condition can occur when methionine is not broken down properly in the body.
People with hypermethioninemia often do not show any symptoms. Some individuals with hypermethioninemia exhibit learning disabilities, mental retardation, and other neurological problems; delays in motor skills such as standing or walking; sluggishness; muscle weakness; liver problems; unusual facial features; and their breath, sweat, or urine may have a smell resembling boiled cabbage.
Hypermethioninemia can occur with other metabolic disorders, such as homocystinuria, tyrosinemia and galactosemia, which also involve the faulty breakdown of particular molecules. It can also result from liver disease or excessive dietary intake of methionine from consuming large amounts of protein or a methionine-enriched infant formula.
A triplex tetra-primer ARMS-PCR method was developed for the simultaneous detection of C677T and A1298C polymorphisms with the A66G MTRR polymorphism in a single PCR reaction.
Folate is found in leafy green vegetables. Multi-vitamins also tend to include Folate as well as many other B vitamins. B vitamins, such as Folate, are water-soluble and excess is excreted in the urine.
When cooking, use of steaming, a food steamer, or a microwave oven can help keep more folate content in the cooked foods, thus helping to prevent folate deficiency.
Folate deficiency during human pregnancy has been associated with an increased risk of infant neural tube defects. Such deficiency during the first four weeks of gestation can result in structural and developmental problems. NIH guidelines recommend oral B vitamin supplements to decrease these risks near the time of conception and during the first month of pregnancy.
Some situations that increase the need for folate include the following:
- hemorrhage
- kidney dialysis
- liver disease
- malabsorption, including celiac disease and fructose malabsorption
- pregnancy and lactation (breastfeeding)
- tobacco smoking
- alcohol consumption
Severe MTHFR deficiency is rare (about 50 cases worldwide) and caused by mutations resulting in 0–20% residual enzyme activity. Patients exhibit developmental delay, motor and gait dysfunction, seizures, and neurological impairment and have extremely high levels of homocysteine in their plasma and urine as well as low to normal plasma methionine levels.
A study on the Chinese Uyghur population indicated that rs1801131 polymorphism in MTHFR was associated with nsCL/P in Chinese Uyghur population. Given the unique genetic and environmental characters of the Uyghur population, these findings may be helpful for exploring the pathogenesis of this complex disease.
Elevated levels of homocysteine have been associated with a number of disease states.
In the developing world the deficiency is very widespread, with significant levels of deficiency in Africa, India, and South and Central America. This is theorized to be due to low intakes of animal products, particularly among the poor.
B deficiency is more common in the elderly. This is because B absorption decreases greatly in the presence of atrophic gastritis, which is common in the elderly.
The 2000 Tufts University study found no correlation between eating meat and differences in B serum levels, likely due to a combination of fortified foods and B absorption disorders.
Hyperhomocysteinemia or hyperhomocysteinaemia is a medical condition characterized by an abnormally high level of homocysteine in the blood, conventionally described as above 15 µmol/L.
As a consequence of the biochemical reactions in which homocysteine is involved, deficiencies of
vitamin B, folic acid (vitamin B), and vitamin B can lead to high homocysteine levels.
Hyperhomocysteinemia is typically managed with vitamin B6, vitamin B9 and vitamin B12 supplementation. Supplements of these vitamins; however, do not change outcomes.
B can be supplemented by pill or injection and appear to be equally effective in those with low levels due to absorption problems.
When large doses are given by mouth its absorption does not rely on the presence of intrinsic factor or an intact ileum. Generally 1 to 2 mg daily is required as a large dose. Even pernicious anemia can be treated entirely by the oral route. These supplements carry such large doses of the vitamin that 1% to 5% of high oral doses of free crystalline B is absorbed along the entire intestine by passive diffusion.
Very high doses of B over many years has been linked to an increase in lung cancer risk in male smokers.
X-linked intellectual disability (previously known as X-linked mental retardation) refers to forms of intellectual disability which are specifically associated with X-linked recessive inheritance.
As with most X-linked disorders, males are more heavily affected than females. Females with one affected X chromosome and one normal X chromosome tend to have milder symptoms.
Unlike many other types of intellectual disability, the genetics of these conditions are relatively well understood. It has been estimated there are ~200 genes involved in this syndrome; of these ~100 have been identified.
X-linked intellectual disability accounts for ~16% of all cases of intellectual disability in males.
The disease is typically progressive, leading to fulminant liver failure and death in childhood, in the absence of liver transplantation. Hepatocellular carcinoma may develop in PFIC-2 at a very early age; even toddlers have been affected.
The exact mechanism in which these diseases cause cachexia is poorly understood, but there is probably a role for inflammatory cytokines, such as tumor necrosis factor-alpha (which is also nicknamed 'cachexin' or 'cachectin'), interferon gamma and interleukin 6, as well as the tumor-secreted proteolysis-inducing factor.
Related syndromes include kwashiorkor and marasmus, although these do not always have an underlying causative illness and are most often symptomatic of severe malnutrition.
Those suffering from the eating disorder anorexia nervosa appear to have high plasma levels of ghrelin. Ghrelin levels are also high in patients who have cancer-induced cachexia.
Several X-linked syndromes include intellectual disability as part of the presentation. These include:
- Coffin–Lowry syndrome
- MASA syndrome
- MECP2 duplication syndrome
- X-linked alpha thalassemia mental retardation syndrome
- mental retardation and microcephaly with pontine and cerebellar hypoplasia
By definition, primary immune deficiencies are due to genetic causes. They may result from a single genetic defect, but most are multifactorial. They may be caused by recessive or dominant inheritance. Some are latent, and require a certain environmental trigger to become manifest, like the presence in the environment of a reactive allergen. Other problems become apparent due to aging of bodily and cellular maintenance processes.
The complement system is part of the innate as well as the adaptive immune system; it is a group of circulating proteins that can bind pathogens and form a membrane attack complex. Complement deficiencies are the result of a lack of any of these proteins. They may predispose to infections but also to autoimmune conditions.
1. C1q deficiency (lupus-like syndrome, rheumatoid disease, infections)
2. C1r deficiency (idem)
3. C1s deficiency
4. C4 deficiency (lupus-like syndrome)
5. C2 deficiency (lupus-like syndrome, vasculitis, polymyositis, pyogenic infections)
6. C3 deficiency (recurrent pyogenic infections)
7. C5 deficiency (Neisserial infections, SLE)
8. C6 deficiency (idem)
9. C7 deficiency (idem, vasculitis)
10. C8a deficiency
11. C8b deficiency
12. C9 deficiency (Neisserial infections)
13. C1-inhibitor deficiency (hereditary angioedema)
14. Factor I deficiency (pyogenic infections)
15. Factor H deficiency (haemolytic-uraemic syndrome, membranoproliferative glomerulonephritis)
16. Factor D deficiency (Neisserial infections)
17. Properdin deficiency (Neisserial infections)
18. MBP deficiency (pyogenic infections)
19. MASP2 deficiency
20. Complement receptor 3 (CR3) deficiency
21. Membrane cofactor protein (CD46) deficiency
22. Membrane attack complex inhibitor (CD59) deficiency
23. Paroxysmal nocturnal hemoglobinuria
24. Immunodeficiency associated with ficolin 3 deficiency
Cachexia or wasting syndrome is loss of weight, muscle atrophy, fatigue, weakness, and significant loss of appetite in someone who is not actively trying to lose weight.
Cachexia is seen in people with cancer, AIDS, coeliac disease, chronic obstructive pulmonary disease, multiple sclerosis, Rheumatoid arthritis, congestive heart failure, tuberculosis, familial amyloid polyneuropathy, mercury poisoning (acrodynia), Crohn's disease, untreated/severe Type 1 Diabetes Mellitus, anorexia nervosa, and hormonal deficiency.
It is a positive risk factor for death, meaning if the person has cachexia, the chance of death from the underlying condition is increased dramatically. It can be a sign of various underlying disorders; when a patient presents with cachexia, a doctor will generally consider the possibility of adverse drug reactions, cancer, metabolic acidosis, certain infectious diseases (e.g., tuberculosis, AIDS), chronic pancreatitis, and some autoimmune disorders. Cachexia physically weakens patients to a state of immobility stemming from loss of appetite, asthenia, and anemia, and response to standard treatment is usually poor. Cachexia includes sarcopenia as a part of its pathology. The term is from Greek κακός "kakos" "bad" and ἕξις "hexis" "condition".
The syndrome primarily affects young males. Preliminary studies suggest that prevalence may be 1.8 per 10,000 live male births. 50% of those affected do not live beyond 25 years of age, with deaths attributed to the impaired immune function.
Causes of NDM
PNDM and TNDM are inherited genetically from the mother or father of the infant. Different genetic inheritance or genetic mutations can lead to different diagnosis of NDM (Permanent or Transient Neonatal Diabetes Mellitus). The following are different types of inheritance or mutations:
- "Autosomal Dominant": Every cell has two copies of each gene-one gen coming from the mother and one coming from the father. Autosomal dominant inheritance pattern is defined as a mutation that occurs in only one copy of the gene. A parent with the mutation can pass on a copy of the gene and a parent with the mutation can pass on a copy of their working gene (or a copy of their damaged gene). In an autosomal dominant inheritance, a child who has a parent with the mutation has a 50% possibility of inheriting the mutation.
- "Autosomal Recessive" -Autosomal recessive-Generally, every cells have two copies of each gene-one gene is inherited from the mother and one gene is inherited from the father. Autosomal recessive inheritance pattern is defined as a mutation present in both copies if the gene in order for a person to be affected and each parent much pass on a mutated gene for a child to be affected. However, if an infant or child has only one copy, he or she are a carrier of the mutation. If moth parents are carriers of the recessive gene mutation, each child have a 25% chance of inheriting the gene.
- "Spontaneous": A new mutation or change occurs within the gene.
- "X-linked:" When a trait or disease happens in a person who has inherited a mutated gene on the X chromosome (one of the sex chromosome).
Prevention: There are no current prevention methods, because TNDM or PNDM are inherited genetically.
Progressive familial intrahepatic cholestasis (PFIC) is a group of familial cholestatic conditions caused by defects in biliary epithelial transporters. The clinical presentation usually occurs first in childhood with progressive cholestasis. This usually leads to failure to thrive, cirrhosis, and the need for liver transplantation.
Griscelli syndrome type 2 (also known as "partial albinism with immunodeficiency") is a rare autosomal recessive syndrome characterized by variable pigmentary dilution, hair with silvery metallic sheen, frequent pyogenic infections, neutropenia, and thrombocytopenia.