Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
This condition is very rare; approximately 600 cases have been reported worldwide. In most parts of the world, only 1% to 2% of all infants with high phenylalanine levels have this disorder. In Taiwan, about 30% of newborns with elevated levels of phenylalanine have a deficiency of THB.
Treatment of THB deficiencies consists of THB supplementation (2–20 mg/kg per day) or diet to control blood phenylalanine concentration and replacement therapy with neurotransmitters precursors (L-DOPA and 5-HTP) and supplements of folinic acid in DHPR deficiency.
Tetrahydrobiopterin is available as a tablet for oral administration in the form of "tetrahydrobiopterin dihydrochloride" (BH4*2HCL). BH4*2HCL is FDA approved under the trade name Kuvan. The typical cost of treating a patient with Kuvan is $100,000 per year. BioMarin holds the patent for Kuvan until at least 2024, but Par Pharmaceutical has a right to produce a generic version by 2020. BH4*2HCL is indicated at least in tetrahydrobiopterin deficiency caused by GTPCH deficiency or PTPS deficiency.
For women with phenylketonuria, it is important for the health of their children to maintain low Phe levels before and during pregnancy. Though the developing fetus may only be a carrier of the PKU gene, the intrauterine environment can have very high levels of phenylalanine, which can cross the placenta. The child may develop congenital heart disease, growth retardation, microcephaly and intellectual disability as a result. PKU-affected women themselves are not at risk of additional complications during pregnancy.
In most countries, women with PKU who wish to have children are advised to lower their blood Phe levels (typically to between 2 and 6 mg/dL) before they become pregnant, and carefully control their levels throughout the pregnancy. This is achieved by performing regular blood tests and adhering very strictly to a diet, in general monitored on a day-to-day basis by a specialist metabolic dietitian. In many cases, as the fetus' liver begins to develop and produce PAH normally, the mother's blood Phe levels will drop, requiring an increased intake to remain within the safe range of 2–6 mg/dL. The mother's daily Phe intake may double or even triple by the end of the pregnancy, as a result. When maternal blood Phe levels fall below 2 mg/dL, anecdotal reports indicate that the mothers may suffer adverse effects, including headaches, nausea, hair loss, and general malaise. When low phenylalanine levels are maintained for the duration of pregnancy, there are no elevated levels of risk of birth defects compared with a baby born to a non-PKU mother.
Persons with the genotype for PKU are unaffected in utero, because maternal circulation prevents buildup of [phe]. After birth, PKU in newborns is treated by a special diet with highly restricted phenylalanine content. Persons with genetic predisposition to PKU have normal mental development on this diet. Previously, it was thought safe to withdraw from the diet in the late teens or early twenties, after the central nervous system was fully developed; recent studies suggest some degree of relapse, and a continued phenylalanine-restricted diet is now recommended.
PKU or hyperphenylalaninemia may also occur in persons without the PKU genotype. If the mother has the PKU genotype but has been treated so as to be asymptomatic, high levels of [phe] in the maternal blood circulation may affect the non-PKU fetus during gestation. Mothers successfully treated for PKU are advised to return to the [phe]-restricted diet during pregnancy.
A small subset of patients with hyperphenylalaninemia shows an appropriate reduction in plasma phenylalanine levels with dietary restriction of this amino acid; however, these patients still develop progressive neurologic symptoms and seizures and usually die within the first 2 years of life ("malignant" hyperphenylalaninemia). These infants exhibit normal phenylalanine hydroxylase (PAH) enzymatic activity but have a deficiency in dihydropteridine reductase (DHPR), an enzyme required for the regeneration of tetrahydrobiopterin (THB or BH), a cofactor of PAH.
Less frequently, DHPR activity is normal but a defect in the biosynthesis of THB exists. In either case, dietary therapy corrects the hyperphenylalaninemia. However, THB is also a cofactor for two other hydroxylation reactions required in the syntheses of neurotransmitters in the brain: the hydroxylation of tryptophan to 5-hydroxytryptophan and of tyrosine to L-dopa. It has been suggested that the resulting deficit in the CNS neurotransmitter activity is, at least in part, responsible for the neurologic manifestations and eventual death of these patients.
Hawkinsinuria, also called 4-Alpha-hydroxyphenylpyruvate hydroxylase deficiency, is an autosomal dominant metabolic disorder affecting the metabolism of tyrosine. Normally, the breakdown of the amino acid tyrosine involves the conversion of 4-hydroxyphenylpyruvate to homogentisate by 4-Hydroxyphenylpyruvate dioxygenase. Complete deficiency of this enzyme would lead to tyrosinemia III. In rare cases, however, the enzyme is still able to produce the reactive intermediate 1,2-epoxyphenyl acetic acid, but is unable to convert this intermediate to homogentisate. The intermediate then spontaneously reacts with glutathione to form 2-L-cystein-S-yl-1,4-dihydroxy-cyclohex-5-en-1-yl acetic acid (hawkinsin).
Patients present with metabolic acidosis during the first year of life, which should be treated by a phenylalanine- and tyrosine-restricted diet. The tolerance toward these amino acids normalizes as the patients get older. Then only a chlorine-like smell of the urine indicates the presence of the condition, patients have a normal life and do not require treatment or a special diet.
The production of hawkinsin is the result of a gain-of-function mutation, inheritance of hawkinsinuria is therefore autosomal dominant (presence of a single mutated copy of the gene causes the condition). Most other inborn errors of metabolism are caused by loss-of-function mutations, and hence have recessive inheritance (condition occurs only if both copies are mutated).
Carnosinemia, also called carnosinase deficiency or aminoacyl-histidine dipeptidase deficiency, is a rare autosomal recessive metabolic disorder caused by a deficiency of "carnosinase", a dipeptidase (a type of enzyme that splits dipeptides into their two amino acid constituents).
Carnosine is a dipeptide composed of beta-alanine and histidine, and is found in skeletal muscle and cells of the nervous system. This disorder results in an excess of carnosine in the urine, cerebrospinal fluid (CSF), blood and nervous tissue. Neurological disorders associated with a deficiency of carnosinase, and the resulting carnosinemia ("carnosine in the blood") are common.
Saccharopinuria (an excess of saccharopine in the urine), also called saccharopinemia, saccharopine dehydrogenase deficiency or alpha-aminoadipic semialdehyde synthase deficiency, is a variant form of hyperlysinemia. It is caused by a partial deficiency of the enzyme saccharopine dehydrogenase, which plays a secondary role in the lysine metabolic pathway. Inheritance is thought to be autosomal recessive, but this cannot be established as individuals affected by saccharopinuria typically have only a 40% reduction in functional enzyme.
Fucosidosis is an extremely rare disorder first described in 1962 in two Italian siblings who showed progressive intellectual disability and neurological deterioration. The disease itself is extremely rare (less than 100 documented cases) only affecting 1:2,000,000, with most cases being occurring in Italy, Cuba, and the southwest U.S. The disease has three different types. Type 1 and 2 are considered severe, and Type 3 being a mild disease. Symptoms are highly variable with mild cases being able to live to within the third or fourth decade. Type 1 and 2 are both linked with mental retardation. Severe cases can develop life-threatening complications early in childhood.
Because the major accumulating glycoconjugate in fucosidosis patients is the blood group H-antigen, it is intriguing to speculate, but the evidence is not clear at this time, that blood type may affect the course of the disease.
Carnosinase in humans has two forms:
1. Cellular, or tissue carnosinase. This form of the enzyme is found in every bodily tissue. It is a dimer, and hydrolyzes both carnosine and anserine, preferring dipeptides that have a histidine monomer in the c-terminus position. Tissue carnosinase is often considered a "non-specific dipeptidase", based in part on its ability to hydrolyze a range of dipeptide substrates, including those belonging to prolinase.
2. Serum carnosinase. This is the carnosinase found in the blood plasma. Deficiency of this form of carnosinase, along with carnosinuria ("carnosine in the urine"), is the usual metabolic indicator of systemic carnosinase deficiency. Serum carnosinase is a glycoprotein, and splits free carnosine and anserine in the blood. This form of the dipeptidase is not found in human blood until late infancy, slowly rising to adult levels by age 15. Unlike tissue carnosinase, serum carnosinase also hydrolyzes the GABA metabolite homocarnosine. Homocarnosinosis, a neurological disorder resulting in an excess of homocarnosine in the brain, though unaffected by tissue carnosinase, is caused by a deficiency of serum carnosinase in its ability to hydrolyze homocarnosine.
A deficiency of tissue and serum carnosinase, with serum being an indicator, is the underlying metabolic cause of carnosinemia.
The average number of new cases of PKU varies in different human populations. United States Caucasians are affected at a rate of 1 in 10,000. Turkey has the highest documented rate in the world, with 1 in 2,600 births, while countries such as Finland and Japan have extremely low rates with fewer than one case of PKU in 100,000 births. A 1987 study from Slovakia reports a Roma population with an extremely high incidence of PKU (one case in 40 births) due to extensive inbreeding. It is the most common amino acid metabolic problem in the United Kingdom.
An inborn error of steroid metabolism is an inborn error of metabolism due to defects in steroid metabolism.
A variety of conditions of abnormal steroidogenesis exist due to genetic mutations in the steroidogenic enzymes involved in the process, of which include:
- 18,20-Desmolase (P450scc) deficiency: blocks production of all steroid hormones from cholesterol
- 3β-Hydroxysteroid dehydrogenase type 2 deficiency: impairs progestogen and androgen metabolism; prevents the synthesis of estrogens, glucocorticoids, and mineralocorticoids; causes androgen deficiency in males and androgen excess in females
- Combined 17α-hydroxylase/17,20-lyase deficiency: impairs progestogen metabolism; prevents androgen, estrogen, and glucocorticoid synthesis; causes mineralocorticoid excess
- Isolated 17,20-lyase deficiency: prevents androgen and estrogen synthesis
- 21-Hydroxylase deficiency: prevents glucocorticoid and mineralocorticoid synthesis; causes androgen excess in females
- 11β-Hydroxylase type 1 deficiency: impairs glucocorticoid and mineralocorticoid metabolism; causes glucocorticoid deficiency and mineralocorticoid excess as well as androgen excess in females
- 11β-Hydroxylase type 2 deficiency: impairs corticosteroid metabolism; results in excessive mineralocorticoid activity
- 18-Hydroxylase deficiency: impairs mineralocorticoid metabolism; results in mineralocorticoid deficiency
- 18-Hydroxylase overactivity: impairs mineralocorticoid metabolism; results in mineralocorticoid excess
- 17β-Hydroxysteroid dehydrogenase deficiency: impairs androgen and estrogen metabolism; results in androgen deficiency in males and androgen excess and estrogen deficiency in females
- 5α-Reductase type 2 deficiency: prevents the conversion of testosterone to dihydrotestosterone; causes androgen deficiency in males
- Aromatase deficiency: prevents estrogen synthesis; causes androgen excess in females
- Aromatase excess: causes excessive conversion of androgens to estrogens; results in estrogen excess in both sexes and androgen deficiency in males
In addition, several conditions of abnormal steroidogenesis due to genetic mutations in "receptors", as opposed to enzymes, also exist, including:
- Gonadotropin-releasing hormone (GnRH) insensitivity: prevents synthesis of sex steroids by the gonads in both sexes
- Follicle-stimulating (FSH) hormone insensitivity: prevents synthesis of sex steroids by the gonads in females; merely causes problems with fertility in males
- Luteinizing hormone (LH) insensitivity: prevents synthesis of sex steroids by the gonads in males; merely causes problems with fertility in females
- Luteinizing hormone (LH) oversensitivity: causes androgen excess in males, resulting in precocious puberty; females are asymptomatic
No activating mutations of the GnRH receptor in humans have been described in the medical literature, and only one of the FSH receptor has been described, which presented as asymptomatic.
The coloration of the skin, hair, and eyes is different in children with PKU. This is caused by low levels of tyrosine, whose metabolic pathway is blocked by deficiency of PAH. Another skin alteration that might occur is the presence of irritation or dermatitis.
The child's behaviour may be influenced as well due to augmented levels of phenethylamine which in turn affects levels of other amines in the brain. Psychomotor function may be affected and observed to worsen progressively.
Most XY children are so undervirilized that they are raised as girls. The testes are uniformly nonfunctional and undescended; they are removed when the diagnosis is made due to the risk of cancer development in these tissues.
This condition is associated with genetic imprinting. It is thought to be inherited in an autosomal dominant pattern, and seems to be associated with a Gs alpha subunit deficiency.
Infertility observed in adult males with congenital adrenal hyperplasia (CAH) has been associated with testicular adrenal rest tumors (TART) that may originate during childhood. TART in prepubertal males with classic CAH could be found during childhood (20%). Martinez-Aguayo et al. reported differences in markers of gonadal function in a subgroup of patients, especially in those with inadequate control.
Canine fucosidosis is found in the English Springer Spaniel.
Typically affecting dogs between 18 months and four years, symptoms include:
- Loss of learned behavior
- Change in temperament
- Blindness
- Loss of balance
- Deafness
- Weight loss
- From the onset, disease progress is quick and fatal.
Just like the human version, canine fucosidosis is a recessive disorder and two copies of the gene must be present, one from each parent, in order to show symptoms of the disease.
Albright's hereditary osteodystrophy is a form of osteodystrophy, and is classified as the phenotype of pseudohypoparathyroidism type 1A; this is a condition in which the body does not respond to parathyroid hormone.
Prolidase deficiency (PD) is an extremely uncommon autosomal recessive disorder associated with collagen metabolism that affects connective tissues and thus a diverse array of organ systems more broadly, though it is extremely inconsistent in its expression.
Collagen is a structural protein found i.a. in bone, skin and connective tissues that is broken down into iminodipeptides at the end of its lifecycle. Of these dipeptides, those containing C-terminal proline or hydroxyproline would normally be broken down further by the enzyme Prolidase, recovering and thus recycling the constituent amino acids.
Due to a genetic defect, prolidase activity in individuals with PD is either knocked out or severely reduced. Those affected therefore eliminate excessive amounts of iminodipeptides in their urine, wasting this precious resource, with debilitating effects.
The most commonly seen form of PDCD is caused by mutations in the X-linked E1 alpha gene and is approximately equally prevalent in both males and females. However, a greater severity of symptoms tends to affect males more often than heterozygous females. This can be explained by x-inactivation, as females carry one normal and one mutant gene. Cells with a normal allele active can metabolize the lactic acid that is released by the PDH deficient cells. They cannot, however, supply ATP to these cells and, therefore, phenotype depends largely on the nature/severity of the mutation.
No curative treatment is available for prolidase deficiency at this time, although palliative treatment is possible to some extent.
The latter mainly focuses on treating the skin lesions through standard methods and stalling collagen degradation (or boosting prolidase performance, where possible), so as to keep the intracellular dipeptide levels low and give the cells time to resynthesise or absorb what proline they cannot recycle so as to be able to rebuild what collagen "does" degrade. Patients can be treated orally with ascorbate (a.k.a. vitamin C, a cofactor of prolyl hydroxylase, an enzyme that hydroxylates proline, increasing collagen stability), manganese (a cofactor of prolidase), suppression of collagenase (a collagen degrading enzyme), and local applications of ointments that contain L-glycine and L-proline. The response to the treatment is inconsistent between affected individuals.
A therapeutic approach based on enzyme replacement (administering functional prolidase) is under consideration.
Due to the weakened immune response in PD cases, it is also of paramount importance to keep any infections under control, often with heavy antibiotics.
Glucocorticoid remediable aldosteronism (GRA), also describable as "aldosterone synthase hyperactivity", is an autosomal dominant disorder in which the increase in aldosterone secretion produced by ACTH is no longer transient.
It is a cause of primary hyperaldosteronism.
The diagnosis of sepiapterin reductase deficiency in a patient at the age of 14 years was delayed by an earlier diagnosis of an initially unclassified form of methylmalonic aciduria at the age of 2. At that time the hypotonia and delayed development were not considered to be suggestive of a neurotransmitter defect. The clinically relevant diagnosis was only made following the onset of dystonia with diurnal variation, when the patient was a teenager. Variability in occurrence and severity of other symptoms of the condition, such as hypotonia, ataxia, tremors, spasticity, bulbar involvement, oculogyric crises, and cognitive impairment, is comparable with autosomal dominant GTPCH and tyrosine hydroxylase deficiency, which are both classified as forms of DOPA-responsive dystonia.
Since CAH is an autosomal recessive disease, most children with CAH are born to parents unaware of the risk and with no family history. Each child will have a 25% chance of being born with the disease. Families typically wish to minimize the degree of virilization of a girl. There is no known prenatal harm to a male fetus from CAH, so treatment can begin at birth.
Adrenal glands of female fetuses with CAH begin producing excess testosterone by the 9th week of gestation. The most important aspects of virilization (urogenital closure and phallic urethra) occur between 8 and 12 weeks. Theoretically, if enough glucocorticoid could be supplied to the fetus to reduce adrenal testosterone production by the 9th week, virilization could be prevented and the difficult decision about timing of surgery avoided.
The challenge of preventing severe virilization of girls is twofold: detection of CAH at the beginning of the pregnancy, and delivery of an effective amount of glucocorticoid to the fetus without causing harm to the mother.
The first problem has not yet been entirely solved, but it has been shown that if dexamethasone is taken by a pregnant woman, enough can cross the placenta to suppress fetal adrenal function.
At present no program screens for risk in families who have not yet had a child with CAH. For families desiring to avoid virilization of a second child, the current strategy is to start dexamethasone as soon as a pregnancy has been confirmed even though at that point the chance that the pregnancy is a girl with CAH is only 12.5%. Dexamethasone is taken by the mother each day until it can be safely determined whether she is carrying an affected girl.
Whether the fetus is an affected girl can be determined by chorionic villus sampling at 9–11 weeks of gestation, or by amniocentesis at 15–18 weeks gestation. In each case the fetal sex can be determined quickly, and if the fetus is a male the dexamethasone can be discontinued. If female, fetal DNA is analyzed to see if she carries one of the known abnormal alleles of the "CYP21" gene. If so, dexamethasone is continued for the remainder of the pregnancy at a dose of about 1 mg daily.
Most mothers who have followed this treatment plan have experienced at least mild cushingoid effects from the glucocorticoid but have borne daughters whose genitalia are much less virilized.
Mannosidosis is a deficiency in mannosidase, an enzyme.
There are two types:
- Alpha-mannosidosis
- Beta-mannosidosis
Pyruvate dehydrogenase deficiency (also known as pyruvate dehydrogenase complex deficiency or PDCD) is one of the most common neurodegenerative disorders associated with abnormal mitochondrial metabolism. PDCD is an X-linked disease that shows heterogeneous characteristics in both clinical presentation and biochemical abnormality. The pyruvate dehydrogenase complex (PDC) is a multi-enzyme complex that plays a vital role as a key regulatory step in the central pathways of energy metabolism in the mitochondria.