Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A hemothorax is managed by removing the source of bleeding and by draining the blood already in the thoracic cavity. Blood in the cavity can be removed by inserting a drain (chest tube) in a procedure called a tube thoracostomy. Generally, the thoracostomy tube is placed between the ribs in the sixth or seventh intercostal space at the mid-axillary line. Usually the lung will expand and the bleeding will stop after a chest tube is inserted.
The blood in the chest can thicken as the clotting cascade is activated when the blood leaves the blood vessels and comes into contact with the pleural surface, injured lung or chest wall, or with the chest tube. As the blood thickens, it can clot in the pleural space (leading to a retained hemothorax) or within the chest tube, leading to chest tube clogging or occlusion. Chest tube clogging or occlusion can lead to worse outcomes as it prevents adequate drainage of the pleural space, contributing to the problem of retained hemothorax. In this case, patients can be hypoxic, short of breath, or in some cases, the retained hemothorax can become infected (empyema).
Retained hemothorax occurs when blood remains in the pleural space, and is a risk factor for the development of complications, including the accumulation of pus in the pleural space and fibrothorax. It is treated by inserting a second chest tube or by drainage by video-assisted thoracoscopy. Fibrolytic therapy has also been studied as a treatment.
When hemothorax is treated with a chest tube, it is important that it maintain its function so that the blood cannot clot in the chest or the tube. If clogging occurs, internal chest tube clearing can be performed using an open or closed technique. Manual manipulation, which may also be called milking, stripping, or tapping, of chest tubes is commonly performed to maintain an open tube, but no conclusive evidence has demonstrated that any of these techniques are more effective than the others, or that they improve chest tube drainage.
In some cases bleeding continues and surgery is necessary to stop the source of bleeding. For example, if the hemothorax was caused by aortic rupture in high energy trauma, surgical intervention is mandatory.
If left untreated, the condition can progress to a point where the blood accumulation begins to put pressure on the mediastinum and the trachea, effectively limiting the amount that the heart's ventricles are able to fill. The condition can cause the trachea to deviate, or move, toward the unaffected side.
RPA's frequently require surgical intervention. A tonsillectomy approach is typically used to access/drain the abscess, and the outcome is usually positive. Surgery in adults may be done without general anesthesia because there is a risk of abscess rupture during tracheal intubation. This could result in pus from the abscess aspirated into the lungs. In complex cases, an emergency tracheotomy may be required to prevent upper airway obstruction caused by edema in the neck.
High-dose intravenous antibiotics are required in order to control the infection and reduce the size of the abscess prior to surgery.
Chronic retropharyngeal abscess is usually secondary to tuberculosis and the patient needs to be started on anti-tubercular therapy as soon as possible.
The formation of a TIF is a medical emergency and requires immediate intervention. Blood volume control, management of the hemorrhage, and adequate oxygenation should be insured in these patients. In a majority of TIF cases (85%), hyperinflation of the tracheostomy cuff will control the bleeding, while the patient is prepared for surgery. However, if this fails the tracheostomy cuff must be removed, and the patient must be intubated from above. Next, pressure from the index finger can be applied on the bleeding site from within the tracheostomy to control the bleeding. In addition, the "Utley Maneuver", which involves digital compression of the artery against the posterior wall of the manubrium of the sternum following a right infraclavicular incision, may be used to urgently control the bleeding When the bleeding is controlled the patient should be immediately transferred on the operating room.
The tissues in the mediastinum will slowly resorb the air in the cavity so most pneumomediastinums are treated conservatively. Breathing high flow oxygen will increase the absorption of the air.
If the air is under pressure and compressing the heart, a needle may be inserted into the cavity, releasing the air.
Surgery may be needed to repair the hole in the trachea, esophagus or bowel.
If there is lung collapse, it is imperative the affected individual lies on the side of the collapse, although painful, this allows full inflation of the unaffected lung.
Treating PPB depends on the size and location of the tumor, whether the cancer has spread, and the child's overall health. Surgery is the main treatment for PPB. The main goal of surgery is to remove the tumor. If the tumor is too large to be completely removed, or if it's not possible to completely remove the tumor, surgery may be performed after chemotherapy. Because PPB can return after treatment, regular screening for possible recurrence should continue for 48 to 60 months, after diagnosis.
To prevent an TIF, intubation time should be limited to less than 2 weeks and proper techniques should be used when performing tracheotomies. The occurrence of an TIF can be reduced by using more flexible and blunt tracheostomy tubes and insuring that the tubes are properly aligned in the patients. Placing the tracheostomy between the second and third tracheal rings can minimize the risk of an TIF. Repetitive head movements, especially, hyperextension of the neck should be avoided as since this movement results in contact between the innominate artery and the underside of the tube.
The mediastinum (from Medieval Latin "mediastinus", "midway") is the central compartment of the thoracic cavity surrounded by loose connective tissue, as an undelineated region that contains a group of structures within the thorax. The mediastinum contains the heart and its vessels, the esophagus, trachea, phrenic and cardiac nerves, the thoracic duct, thymus and lymph nodes of the central chest.
Traumatic aortic rupture is treated with surgery. However, morbidity and mortality rates for surgical repair of the aorta for this condition are among the highest of any cardiovascular surgery. For example, surgery is associated with a high rate of paraplegia, because the spinal cord is very sensitive to ischemia (lack of blood supply), and the nerve tissue can be damaged or killed by the interruption of the blood supply during surgery.
A less invasive option for treatment is endovascular repair, which does not require open thoracotomy and can be safer for people with other injuries to organs.
Since high blood pressure could exacerbate an incomplete tear in the aorta or even separate it completely from the heart, which would almost inevitably kill the patient, hospital staff take measures to keep the blood pressure low. Such measures include giving pain medication, keeping the patient calm, and avoiding procedures that could cause gagging or vomiting. Beta blockers and vasodilators can be given to lower the blood pressure, and intravenous fluids that might normally be given are foregone to avoid raising it.
Treatment of the flail chest initially follows the principles of advanced trauma life support. Further treatment includes:
- Good pain management includes intercostal blocks and avoiding opioid pain medication as much as possible. This allows much better ventilation, with improved tidal volume, and increased blood oxygenation.
- Positive pressure ventilation, meticulously adjusting the ventilator settings to avoid pulmonary barotrauma.
- Chest tubes as required.
- Adjustment of position to make the person most comfortable and provide relief of pain.
- Aggressive pulmonary toilet
Surgical fixation can help in significantly reducing the duration of ventilatory support and in conserving the pulmonary function.
A person may be intubated with a double lumen tracheal tube. In a double lumen endotracheal tube, each lumen may be connected to a different ventilator. Usually one side of the chest is affected more than the other, so each lung may require drastically different pressures and flows to adequately ventilate.
In order to begin a rehabilitation program for a flail chest it is important to treat the person's pain so they are able to perform the proper exercises. Due the underlying conditions that the flail segment has caused onto the respiratory system, chest physiotherapy is important to reduce further complications. Proper positioning of the body is key, including postural alignment for proper drainage of mucous secretions. The therapy will consist of a variety of postural positioning and changes in order to increase normal breathing. Along with postural repositioning, a variety of breathing exercises are also very important in order to allow the chest wall to reposition itself back to normal conditions. Breathing exercises will also include coughing procedures. Furthermore, range of motion exercises are given to reduce the atrophy of the musculature. With progression, resistance exercises are added to the regimen to the shoulder and arm of the side containing the injury. Moreover, trunk exercises will be introduced while sitting and will progress to during standing.
Hip flexion exercises can be done to expand the thorax. This is done by lying supine on a flat surface, flexing the knees and hips and bringing them in toward the chest. The knees should come in toward the chest while the person inhales, and exhale when the knees are lowered. This exercise can be done in 3 sets of 6-8 repetitions with a pause in between sets. The person should always make sure to maintain controlled breaths.
Eventually, the person will be progressed to walking and posture correction while walking. Before, the person is discharged from the hospital the person should be able to perform mobility exercises to the core and should have attained good posture.
Subcutaneous emphysema is usually benign. Most of the time, SCE itself does not need treatment (though the conditions from which it results may); however, if the amount of air is large, it can interfere with breathing and be uncomfortable. It occasionally progresses to a state "Massive Subcutaneous Emphysema" which is quite uncomfortable and requires surgical drainage. When the amount of air pushed out of the airways or lung becomes massive, usually due to positive pressure ventilation, the eyelids swell so much that the patient cannot see. Also the pressure of the air may impede the blood flow to the areolae of the breast and skin of the scrotum or labia. This can lead to necrosis of the skin in these areas. The latter are urgent situations requiring rapid, adequate decompression. Severe cases can compress the trachea and do require treatment.
In severe cases of subcutaneous emphysema, catheters can be placed in the subcutaneous tissue to release the air. Small cuts, or "blow holes", may be made in the skin to release the gas. When subcutaneous emphysema occurs due to pneumothorax, a chest tube is frequently used to control the latter; this eliminates the source of the air entering the subcutaneous space. If the volume of subcutaneous air is increasing, it may be that the chest tube is not removing air rapidly enough, so it may be replaced with a larger one. Suction may also be applied to the tube to remove air faster. The progression of the condition can be monitored by marking the boundaries with a special pencil for marking on skin.
Since treatment usually involves dealing with the underlying condition, cases of spontaneous subcutaneous emphysema may require nothing more than bed rest, medication to control pain, and perhaps supplemental oxygen. Breathing oxygen may help the body to absorb the subcutaneous air more quickly.
The production of pancreatic enzymes is suppressed by restricting the patient's oral intake of food patient in conjunction with the use of long-acting somatostatin analogues. The patient's nutrition is maintained by total parenteral nutrition.
This treatment is continued for 2–3 weeks, and the patient is observed for improvement. If no improvement is seen, the patient may receive endoscopic or surgical treatment. If surgical treatment is followed, an ERCP is needed to identify the site of the leak.
Fistulectomy is done in which the involved part of the pancreas is also removed.
"Widened mediastinum/mediastinal widening" is where the mediastinum has a width greater than 6 cm on an upright PA chest X-ray or 8 cm on supine AP chest film.
A widened mediastinum can be indicative of several pathologies:
- aortic aneurysm
- aortic dissection
- aortic unfolding
- aortic rupture
- hilar lymphadenopathy
- anthrax inhalation - a widened mediastinum was found in 7 of the first 10 victims infected by anthrax ("Bacillus anthracis") in 2001.
- esophageal rupture - presents usually with pneumomediastinum and pleural effusion. It is diagnosed with water-soluble swallowed contrast.
- mediastinal mass
- mediastinitis
- cardiac tamponade
- pericardial effusion
- thoracic vertebrae fractures in trauma patients.
Before the development of modern cardiovascular surgery, cases of acute mediastinitis usually arose from either perforation of the esophagus or from contiguous spread of odontogenic or retropharyngeal infections. However, in modern practice, most cases of acute mediastinitis result from complications of cardiovascular or endoscopic surgical procedures.
Treatment usually involves aggressive intravenous antibiotic therapy and hydration. If discrete fluid collections or grossly infected tissue have formed (such as abscesses), they may have to be surgically drained or debrided.
Second most common primary anterior mediastinal mass in adults. Most are seen in the anterior compartment and rest are seen in middle compartment. Hodgkin's usually present in 40-50's with nodular sclerosing type (7), and non-Hodgkin's in all age groups. Can also be primary mediastinal B-cell lymphoma with exceptionally good prognosis. Common symptoms include fever, weight loss, night sweats, and compressive symptoms such as pain, dyspnea, wheezing, Superior vena cava syndrome, pleural effusions (10,11). Diagnosis usually by CT showing lobulated mass. Confirmation done by tissue biopsy of accompanying nodes if any, mediastinoscopy, mediastinotomy, or thoracotomy. FNA biopsy is usually not adequate. (12,13,14) Treatment of mediastinal Hodgkin's involves chemotherapy and/or radiation. 5 year survival is now around 75%. (15) Large-cell type may have somewhat better prognosis. Surgery is generally not performed because of invasive nature of tumor.
Of all cancers involving the same class of blood cell, 2% of cases are mediastinal large B cell lymphomas.
With the exception of a few case reports describing survival without surgery, the mortality of untreated Boerhaave syndrome is nearly 100%. Its treatment includes immediate antibiotic therapy to prevent mediastinitis and sepsis, surgical repair of the perforation, and if there is significant fluid loss it should be replaced with IV fluid therapy since oral rehydration is not possible. Even with early surgical intervention (within 24 hours) the risk of death is 25%.
The mediastinum is the cavity that separates the lungs from the rest of the chest. It contains the heart, esophagus, trachea, thymus, and aorta. The mediastinum has three main parts: the anterior mediastinum (front), the middle mediastinum, and the posterior mediastinum (back).
The most common mediastinal masses are neurogenic tumors (20% of mediastinal tumors), usually found in the posterior mediastinum, followed by thymoma (15-20%) located in the anterior mediastinum.
Masses in the anterior portion of the mediastinum can include thymoma, lymphoma, pheochromocytoma, germ cell tumors including teratoma, thyroid tissue, and parathyroid lesions. Masses in this area are more likely to be malignant than those in other compartments.
Masses in the posterior portion of the mediastinum tend to be neurogenic in origin, and in adults tend to be of neural sheath origin including neurilemomas and neurofibromas.
Lung cancer typically spreads to the lymph nodes in the mediastinum.
Air in subcutaneous tissue does not usually pose a lethal threat; small amounts of air are reabsorbed by the body. Once the pneumothorax or pneumomediastinum that causes the subcutaneous emphysema is resolved, with or without medical intervention, the subcutaneous emphysema will usually clear. However, spontaneous subcutaneous emphysema can, in rare cases, progress to a life-threatening condition, and subcutaneous emphysema due to mechanical ventilation may induce ventilatory failure.
Small myelolipomas generally do not produce symptoms, and do not require treatment. Ongoing surveillance of these lesions by a doctor is recommended. Surgical excision (removal) is recommended for large myelolipomas because of the risk of bleeding complications.
Treatment is supportive. Hamman's syndrome tends to be benign and self-limiting. It is important to differentiate it from far more serious conditions that have similar symptoms, such as Boerhaave's syndrome.
Mild cases are managed by limiting activity, keeping a healthy body weight, and avoiding exposure to high ambient temperatures. Mild sedatives can be used to decrease anxiety and panting and therefore improve respiration. Corticosteroids may also be administered in acute cases to decrease inflammation and edema of the larynx.
Severe acute symptoms, such as difficulty breathing, hyperthermia, or aspiration pneumonia, must be stabilized with sedatives and oxygen therapy and may require steroid or antibiotic medications. Sometimes a tracheotomy is required to allow delivery of oxygen. Once the patient is stabilized, surgical treatment may be beneficial especially when paralysis occurs in both aretynoid cartilages (bilateral paralysis). The surgery (aretynoid lateralization, or a "laryngeal tieback") consists of suturing one of the aretynoid cartilages in a maximally abducted (open) position. This reduces the signs associated with inadequate ventilation (such as exercise intolerance or overheating) but may exacerbate the risk of aspiration and consequent pneumonia. Tying back only one of the aretynoid cartilages instead of both helps reduce the risk of aspiration. Afterwards the dog will still sound hoarse, and will need to be managed in the same way as those with mild cases of LP.
Recent studies have found that many dogs with laryngeal paralysis have decreased motility of their esophagus. Animals with a history of regurgitation or vomiting should be fully evaluated for esophageal or other gastrointestinal disorders. Dogs with megaesophagus or other conditions causing frequent vomiting or regurgitation are at high risk for aspiration pneumonia after laryngeal tie-back. Permanent tracheostomy is an alternative surgical option for these dogs to palliate their clincical signs.
Pneumomediastinum (from Greek "pneuma" – "air", also known as mediastinal emphysema) is (abnormal presence of air or other gas) in the mediastinum. First described in 1819 by René Laennec, the condition can result from physical trauma or other situations that lead to air escaping from the lungs, airways, or bowel into the chest cavity.
In the great majority of cases, sufferers experience no life-altering discomfort, and no treatment is required. If there is pain or discomfort, 3 or 4 sips of room temperature water will usually relieve the pain. Symptomatic patients should elevate the head of their beds and avoid lying down directly after meals. If the condition has been brought on by stress, stress reduction techniques may be prescribed, or if overweight, weight loss may be indicated. Antisecretory drugs like proton pump inhibitors and H receptor blockers can be used to reduce acid secretion. Medications that reduce the lower esophageal sphincter (LES) pressure should be avoided.
However, in some unusual instances, as when the hiatal hernia is unusually large, or is of the paraesophageal type, it may cause esophageal stricture or severe discomfort. About 5% of hiatus hernias are paraesophageal. If symptoms from such a hernia are severe for example if chronic acid reflux threatens to severely injure the esophagus or is causing Barrett's esophagus, surgery is sometimes recommended. However surgery has its own risks including death and disability, so that even for large or paraesophageal hernias, watchful waiting may on balance be safer and cause fewer problems than surgery. Complications from surgical procedures to correct a hiatus hernia may include gas bloat syndrome, dysphagia (trouble swallowing), dumping syndrome, excessive scarring, and rarely, achalasia. Surgical procedures sometimes fail over time, requiring a second surgery to make repairs.
One surgical procedure used is called Nissen fundoplication. In fundoplication, the gastric fundus (upper part) of the stomach is wrapped, or plicated, around the inferior part of the esophagus, preventing herniation of the stomach through the hiatus in the diaphragm and the reflux of gastric acid. The procedure is now commonly performed laparoscopically. With proper patient selection, laparoscopic fundoplication recent studies have indicated relatively low complication rates, quick recovery, and relatively good long term results.
Chronic mediastinitis is usually a radiologic diagnosis manifested by diffuse fibrosis of the soft tissues of the mediastinum. This is sometimes the consequence of prior granulomatous disease, most commonly histoplasmosis. Other identifiable causes include tuberculosis, IgG4-related disease and radiation therapy. Fibrosing mediastinitis most frequently causes problems by constricting blood vessels or airways in the mediastinum. This may result in such complications as superior vena cava syndrome or pulmonary edema from compression of pulmonary veins.
Treatment for chronic fibrosing mediastinitis is somewhat controversial, and may include steroids or surgical decompression of affected vessels.