Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
It is important to distinguish between treatment of the underlying inflammation (PIC) and the treatment of CNV.
2-pronged approach:
Treatment is not always necessary and observation may be appropriate for lesions if they are found in non-sight threatening areas (that is not centrally).
Active lesions of PIC can be treated with corticosteroids taken systemically (tablets) or regionally by injections around the eye (periorbital). It has been argued that treating lesions in this way may help minimise the development of CNV.
The treatment of CNV:
Early treatment is required for this complication. There are several possible treatment methods, but none of these treatments appears to be singly effective for the treatment of CNV.
1. Corticosteroids: systemic or intraocular
2. ‘Second line’ immunosuppressants: There is evidence that combined therapies of steroids and second line immunosuppressants may be important.
3. Surgical excision of the affected area in well selected cases.
4. Intravitreal anti-VEGF agents. Examples are bevacizumab (avastin) and ranibizumab. These relatively new drugs are injected into the eye.
5. Photodynamic therapy (PDT): A photosensitive drug is ‘activated’ by strong light. Consideration may be given to combined therapy of PDT and anti VEGF.
6. Laser photocoagulation: This is occasionally used unless the CNV is subfoveal (affecting the central or macular part of the vision). The laser treatment can damage the vision.
The use of the intravitreal anti VEGF agents namely bevacizumab and ranibizumab have been described recently. The current evidence supporting the use of anti-VEGF agents is based on retrospective case studies and could not be described as strong. However, further data from prospective controlled trials are needed before the therapeutic role of anti-VEGF therapy in the uveitis treatment regimen can be fully determined. The anti VEGF agents furthermore have not been shown to have an anti-inflammatory effect.
Thus, treatment of the underlying inflammatory disease should play a central role in the management of uveitic CNV. A two-pronged treatment that focuses on achieving control of inflammation through the use of corticosteroids and/or immunosuppressive agents, while treating
complications that arise despite adequate disease control with intravitreal anti-VEGF agents, may be useful.
Regular monitoring is essential to achieve a good outcome. This is because even if there is no active inflammation, there may still be occult CNV which requires treatment to avoid suffering vision loss.
Corticosteroids are administered through IV or orally. They cause lymphocytopenia, a condition where white blood cell levels are abnormally low. Corticosteroids cause white blood cell death, lowering their numbers throughout the body. They also cause white blood cells to recirculate away from the area of damage (the retina). This minimizes damage caused by the antibodies produced by the white blood cells. Often, this is treatment is combined with plasmapheresis. Instead of treating the plasma and blood cells, they are replaced with a healthy donor mixture. Patients who respond positively show improved visual fields and an almost complete disappearance of anti-retinal antibodies.
Owing to the self-limiting nature of the disease, treatment is generally not required. In cases where lesions appear to be interfering with the optic nerve, methyl prednisone is prescribed.
Plasmapheresis involves separating blood into two parts - blood cells and plasma. The blood plasma components, such as the antibodies, are treated outside of the body. After removal of the disease-associated antibodies, the blood cells and plasma are transfused back into the body. Response to this treatment depends on how much retinal damage has been done. Patients who respond positively show significant visual gains.
Uveitis is typically treated with glucocorticoid steroids, either as topical eye drops (prednisolone acetate) or as oral therapy. Prior to the administration of corticosteroids, corneal ulcers must be ruled out. This is typically done using a fluoresence dye test. In addition to corticosteroids, topical cycloplegics, such as atropine or homatropine, may be used. Successful treatment of active uveitis increases T-regulatory cells in the eye, which likely contributes to disease regression.
In some cases an injection of posterior subtenon triamcinolone acetate may also be given to reduce the swelling of the eye.
Antimetabolite medications, such as methotrexate are often used for recalcitrant or more aggressive cases of uveitis. Experimental treatments with Infliximab or other anti-TNF infusions may prove helpful.
The anti-diabetic drug metformin is reported to inhibit the process that causes the inflammation in uveitis.
In the case of herpetic uveitis, anti-viral medications, such as valaciclovir or aciclovir, may be administered to treat the causative viral infection.
A punctal plug may be inserted into the tear duct by an optometrist or ophthalmologist, decreasing the removal of natural tears from the affected eye.
The use of contact lenses may help prevent the abrasion during blinking lifting off the surface layer and uses thin lenses that are gas permeable to minimise reduced oxygenation. However they need to be used for between 8–26 weeks and such persistent use both incurs frequent follow-up visits and may increase the risk of infections.
Alternatively, under local anaesthetic, the corneal layer may be gently removed with a fine needle, cauterised (heat or laser) or 'spot welding' attempted (again with lasers). The procedures are not guaranteed to work, and in a minority may exacerbate the problem.
Anterior Stromal Puncture with a 20-25 gauge needle is an effective and simple treatment.
An option for minimally invasive and long-term effective therapy is laser phototherapeutic keratectomy. Laser PTK involves the surgical laser treatment of the cornea to selectively ablate cells on the surface layer of the cornea. It is thought that the natural regrowth of cells in the following days are better able to attach to the basement membrane to prevent recurrence of the condition. Laser PTK has been found to be most effective after epithelial debridement for the partial ablation of Bowman's lamella, which performed prior to PTK in the surgical procedure. This is meant to smoothen out the corneal area that the laser PTK will then treat. In some cases, small-spot PTK, which only treats certain areas of the cornea may also be an acceptable alternative.
What happens with PIC depends a lot on the presence or absence of an important complication, Choroidal neovascularization (known as CNV).
Often, the inflammation in PIC is self limiting, not always requiring treatment.
However treatment is advised if there are many active or central lesions, or if there are signs of CNV.
Photic retinopathy generally goes away on its own over time, but there is no specific treatment known to be reliable for speeding recovery. One path sometimes attempted, which has unclear results, is to treat the initial macular edema with corticosteroids.
The prognosis is generally good for those who receive prompt diagnosis and treatment, but serious complication including cataracts, glaucoma, band keratopathy, macular edema and permanent vision loss may result if left untreated. The type of uveitis, as well as its severity, duration, and responsiveness to treatment or any associated illnesses, all factor into the outlook.
With the eye generally profusely watering, the type of tears being produced have little adhesive property. Water or saline eye drops tend therefore to be ineffective. Rather a 'better quality' of tear is required with higher 'wetting ability' (i.e. greater amount of glycoproteins) and so artificial tears (e.g. viscotears) are applied frequently. Also recommended is Muro 128 5% Ointment (Sodium Chloride Hypertonicity Ophthalmic Ointment, 5%) which is a great relief overnight, it lasts longer than most regular tears and provides protection for those with severe cases.
Nocturnal Lagophthalmos (where one’s eyelids don’t close enough to cover the eye completely during sleep) may be an exacerbating factor, in which case using surgical tape to keep the eye closed at night can help.
Whilst individual episodes may settle within a few hours or days, additional episodes (as the name suggests) will recur at intervals.
Where episodes frequently occur, or there is an underlying disorder, one medical, or three types of surgical curative procedures may be attempted:
use of therapeutic contact lens, controlled puncturing of the surface layer of the eye (Anterior Stromal Puncture) and laser phototherapeutic keratectomy (PTK). These all essentially try to allow the surface epithelium to reestablish with normal binding to the underlying basement membrane, the method chosen depends upon the location & size of the erosion.
Vision improves in almost all cases. In rare cases, a patient may suffer permanent visual loss associated with lesions on their optic nerve.
Rarely, coexisting vasculitis may cause neurological complications. These occurrences can start with mild headaches that steadily worsen in pain and onset, and can include attacks of dysesthesia. This type of deterioration happens usually if the lesions involve the fovea.
Since interleukin 1β plays a central role in the pathogenesis of the disease, therapy typically targets this cytokine in the form of monoclonal antibodies (such as canakinumab), binding proteins/traps (such as rilonacept), or interleukin 1 receptor antagonists (such as anakinra). These therapies are generally effective in alleviating symptoms and substantially reducing levels of inflammatory indices. Case reports suggest that thalidomide and the anti-IL-6 receptor antibody tocilizumab may also be effective.
Generally speaking, people diagnosed with photic retinopathy recover visual acuity completely within two months, though more severe cases may take longer, or not see complete recovery at all.
White dot syndromes are inflammatory diseases characterized by the presence of white dots on the fundus, the interior surface of the eye. The majority of individuals affected with white dot syndromes are younger than fifty years of age. Some symptoms include blurred vision and visual field loss. There are many theories for the etiology of white dot syndromes including infectious, viral, genetics and autoimmune.
Classically recognized white dot syndromes include:
- Acute posterior multifocal placoid pigment epitheliopathy (APMPPE)
- Birdshot chorioretinopathy
- Multiple evanescent white dot syndrome (MEWDS)
- Acute zonal occult outer retinopathy (AZOOR)
- Multifocal choroiditis and panuveitis (MCP)
- Punctate inner choroiditis (PIC)
- Serpiginous choroiditis
Specific characteristics regarding the white dots and predicted etiology are presented of selected diseases.
Phototherapeutic keratectomy (PTK) done by an ophthalmologist can restore and preserve useful visual function for a significant period of time in patients with anterior corneal dystrophies including EBMD.
MEWDS is a self limited disease with excellent visual recovery within 2-10 weeks. However residual symptoms including photopsia may persist for months.
Suppression may treated with vision therapy, though there is a wide range of opinions on long-term effectiveness between eye care professionals, with little scientific evidence of long-term improvement of suppression, if the underlying cause is not addressed (strabismus, amblyopia, etc.).
Multiple evanescent white dot syndrome (MEWDS) is an uncommon inflammatory condition of the retina that typically affects otherwise healthy young females in the second to fourth decades of life.
The typical patient with MEWDS is a healthy middle aged female age 15-50. There is a gender disparity as women are affected with MEWDS four times more often than men. Roughly 30% of patients have experienced an associated viral prodrome. Patients present with acute, painless, unilateral change in vision.
Spider angiomas are asymptomatic and usually resolve spontaneously. This is common in the case of children, although they may take several years to disappear. If the spider angiomas are associated with pregnancy, they may resolve after childbirth. In women taking oral contraceptives, they may resolve after stopping these contraceptives. The spider angiomas associated with liver disease may resolve when liver function increases or when a liver transplant is performed.
For spider angiomas on the face, techniques such as electrodesiccation and laser treatment can be used to remove the lesion. There is a small risk of a scar, although the results are generally good. Spider angiomas can recur after treatment.
Acute zonal occult outer retinopathy (AZOOR) is an inflammatory retinopathy in the category of white dot syndromes typified by acute loss of one or more zones of outer retinal function associated with photopsia, minimal funduscopic changes and abnormal electroretinography findings.
There is no known cure for Winchester syndrome; however, there are many therapies that can aid in the treatment of symptoms. Such treatments can include medications: anti-inflammatories, muscle relaxants, and antibiotics. Many individuals will require physical therapy to promote movement and use of the limbs affected by the syndrome. Genetic counseling is typically prescribed for families to help aid in the understanding of the disease. There are a few clinical trials available to participate in. The prognosis for patients diagnosed with Winchester syndrome is positive. It has been reported that several affected individuals have lived to middle age; however,the disease is progressive and mobility will become limited towards the end of life. Eventually, the contractures will remain even with medical intervention, such as surgery.
Treatment plans will vary depending on the severity of the condition and its evidences in each patient.
Areas that will probably need to be evaluated and assessed include speech, vision, hearing and EEG. Treatment measures may include physical therapy, occupational therapy, Speech therapy, anti-seizure drugs and orthotic devices. Surgery may be needed to assuage spastic motor problems. Various supportive measures such as joint contractures that could prevent complications.
Genetic counseling may also be recommended
Treatment for the disease itself is nonexistent, but there are options for most of the symptoms. For example, one suffering from hearing loss would be given hearing aids, and those with Hirschsprung’s disorder can be treated with a colostomy.
Immunosuppressive therapy may be used in "type I" of this condition, ketoconazole can be used for "autoimmune polyendocrine syndrome type I" under certain conditions The component diseases are managed as usual, the challenge is to detect the possibility of any of the syndromes, and to anticipate other manifestations. For example, in a person with known Type 2 autoimmune polyendocrine syndrome but no features of Addison's disease, regular screening for antibodies against 21-hydroxylase may prompt early intervention and hydrocortisone replacement to prevent characteristic crises