Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Should the viral progression be diagnosed during stage 1 (even during late stage 1 when stage 2 symptoms start to manifest themselves) then treatment to combat the infection can be administered successfully—there is no cure for SSPE but if it is caught early enough then the sufferer can respond to the treatment and prevent symptom recurrence by taking the medication for the rest of their life. The treatment for the SSPE infection is the immunomodulator interferon and specific antiviral medication—ribavirin and inosine pranobex are specifically used to greater effect than antivirals such as amantadine.
For those who have progressed to stage 2 or beyond, the disease is incurable. For patients in the terminal phase of the disease there is a palliative care and treatment scheme—this involves anticonvulsant therapy (to help with the body's progressive loss of control of the nervous system causing gradually more intensive spasms/convulsions) alongside supportive measures to help maintain vital functioning. It is fairly standard as the infection spreads and symptoms intensify that feeding tubes need to be inserted to keep a nutritional balance. As the disease progresses to its most advanced phase, the patient will need constant nursing as normal bodily function declines to the complete collapse of the nervous system.
Combinations of treatment for SSPE include:
- Oral inosine pranobex (oral isoprinosine) combined with intrathecal (injection through a lumbar puncture into the spinal fluid) or intraventricular interferon alpha.
- Oral inosine pranobex (oral isoprinosine) combined with interferon beta.
- Intrathecal interferon alpha combined with intravenous ribavirin.
In the US, neuroborreliosis is typically treated with intravenous antibiotics which cross the blood–brain barrier, such as penicillins, ceftriaxone, or cefotaxime. One relatively small randomized controlled trial suggested ceftriaxone was more effective than penicillin in the treatment of neuroborreliosis. Small observational studies suggest ceftriaxone is also effective in children. The recommended duration of treatment is 14 to 28 days.
Several studies from Europe have suggested oral doxycycline is equally as effective as intravenous ceftriaxone in treating neuroborreliosis. Doxycycline has not been widely studied as a treatment in the US, but antibiotic sensitivities of prevailing European and US isolates of "Borrelia burgdorferi" tend to be identical. However, doxycycline is generally not prescribed to children due to the risk of bone and tooth damage.
Discreditied or doubtful treatments for neuroborreliosis include:
- Malariotherapy
- Hyperbaric oxygen therapy
- Colloidal silver
- Injections of hydrogen peroxide and bismacine
At the time of the report there was no known treatment for the disease; specifically, it was not established whether steroids were helpful or harmful. Other techniques such as plasmaphoresis, intravenous immunoglobulin, and experimental antiviral drugs have been attempted on a trial basis, but have not been reported to be effective. On November 7 the CDC issued "Interim Considerations for Clinical Management of Patients with Acute Flaccid Myelitis", based on "consensus guidance drawn from experts in infectious diseases, neurology, pediatrics, critical care medicine, public health epidemiology and virology." Mark Sawyer of the American Academy of Pediatrics, who contributed to the guidance, was quoted by the organization's newsletter: The most important issue summarized in the document is that there is no clear evidence that therapies intended to modify the immune system (e.g., corticosteroids, immune globulin, plasmapheresis) have a beneficial effect in this condition. Plasmapheresis is specifically not recommended because the potential for harm is significant in the absence of any evidence of benefit.
During the acute stage, treatment is aimed at reducing the inflammation. As in other inflammatory diseases, steroids may be used first of all, either as a short course of high-dose treatment, or in a lower dose for long-term treatment. Intravenous immunoglobulin is also effective both in the short term and in the long term, particularly in adults where it has been proposed as first-line treatment. Other similar treatments include plasmapheresis and tacrolimus, though there is less evidence for these. None of these treatments can prevent permanent disability from developing.
During the residual stage of the illness when there is no longer active inflammation, treatment is aimed at improving the remaining symptoms. Standard anti-epileptic drugs are usually ineffective in controlling seizures, and it may be necessary to surgically remove or disconnect the affected cerebral hemisphere, in an operation called hemispherectomy. This usually results in further weakness, hemianopsia and cognitive problems, but the other side of the brain may be able to take over some of the function, particularly in young children. The operation may not be advisable if the left hemisphere is affected, since this hemisphere contains most of the parts of the brain that control language. However, hemispherectomy is often very effective in reducing seizures.
Typical tumefactive lesions have been found to be responsive to corticosteroids because of their immunosuppressive and anti-inflammatory properties. They restore the blood-brain barrier and induce cell death of T-cells.
No standard treatment exists, but practitioners seem to apply intravenous corticosteroids, followed by plasmapheresis and cyclophosphamide in non-responsive cases High dose intravenous corticosteroids (methylprednisolone 1 g for 3–5 days) followed by oral tapering hasten clinical and radiological improvement in approximately 80% of patients
Plasmapheresis has been reported to work even in the absence of response to corticosteroids
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
Since each case is different, the following are possible treatments that patients might receive in the management of myelitis.
- Intravenous steroids
High-dose intravenous methyl-prednisolone for 3–5 days is considered as a standard of care for patients suspected to have acute myelitis, unless there are compelling reasons otherwise. The decision to offer continued steroids or add a new treatment is often based on the clinical course and MRI appearance at the end of 5 days of steroids.
- Plasma exchange (PLEX)
Patients with moderate to aggressive forms of disease who don’t show much improvement after being treated with intravenous and oral steroids will be treated with PLEX. Retrospective studies of patients with TM treated with IV steroids followed by PLEX showed a positive outcome. It also has been shown to be effective with other autoimmune or inflammatory central nervous system disorders. Particular benefit has been shown with patients who are in the acute or subacute stage of the myelitis showing active inflammation on MRI. However, because of the risks implied by the lumbar puncture procedure, this intervention is determined by the treating physician on a case-by-case basis.
- Immunosuppressants/Immunomodulatory agents
Myelitis with no definite cause seldom recurs, but for others, myelitis may be a manifestation of other diseases that are mentioned above. In these cases, ongoing treatment with medications that modulate or suppress the immune system may be necessary. Sometimes there is no specific treatment. Either way, aggressive rehabilitation and long-term symptom management are an integral part of the healthcare plan.
Attacks are treated with short courses of high dosage intravenous corticosteroids such as methylprednisolone IV.
Plasmapheresis can be an effective treatment when attacks progress or do not respond to corticosteroid treatment. Clinical trials for these treatments contain very small numbers, and most are uncontrolled, though some report high success percentage.
Six of ten children in Denver were sent home for outpatient treatment; some with mild symptoms have recovered from temporary limb weakness, while the fate of those more severely affected remains unclear. Intensive physical therapy and occupational therapy may be beneficial for recovery.
No controlled clinical trials have been conducted on ADEM treatment, but aggressive treatment aimed at rapidly reducing inflammation of the CNS is standard. The widely accepted first-line treatment is high doses of intravenous corticosteroids, such as methylprednisolone or dexamethasone, followed by 3–6 weeks of gradually lower oral doses of prednisolone. Patients treated with methylprednisolone have shown better outcomes than those treated with dexamethasone. Oral tapers of less than three weeks duration show a higher chance of relapsing, and tend to show poorer outcomes. Other anti-inflammatory and immunosuppressive therapies have been reported to show beneficial effect, such as plasmapheresis, high doses of intravenous immunoglobulin (IVIg), mitoxantrone and cyclophosphamide. These are considered alternative therapies, used when corticosteroids cannot be used or fail to show an effect.
There is some evidence to suggest that patients may respond to a combination of methylprednisolone and immunoglobulins if they fail to respond to either separately
In a study of 16 children with ADEM, 10 recovered completely after high-dose methylprednisolone, one severe case that failed to respond to steroids recovered completely after IV Ig; the five most severe cases -with ADAM and severe peripheral neuropathy- were treated with combined high-dose methylprednisolone and immunoglobulin, two remained paraplegic, one had motor and cognitive handicaps, and two recovered. A recent review of IVIg treatment of ADEM (of which the previous study formed the bulk of the cases) found that 70% of children showed complete recovery after treatment with IVIg, or IVIg plus corticosteroids. A study of IVIg treatment in adults with ADEM showed that IVIg seems more effective in treating sensory and motor disturbances, while steroids seem more effective in treating impairments of cognition, consciousness and rigor. This same study found one subject, a 71-year-old man who had not responded to steroids, that responded to an IVIg treatment 58 days after disease onset.
Currently, there is no cure for Devic's disease, but symptoms can be treated. Some patients recover, but many are left with impairment of vision and limbs, which can be severe.
Early and aggressive treatment is important to prevent irreversible neurological damage, hearing loss, or vision loss. Medications used include immunosuppressive agents and corticosteroids such a prednisone, or intravenous immunoglobulins (IVIG). Other drugs that have been used are mycophenolate mofetil (Cellcept), azathioprine (Imuran), cyclophosphamide, rituximab, and anti-TNF therapies.
Hearing aids or cochlear implants may be necessary in the event of hearing loss.
Immunosuppressive therapies, encompassing corticosteroids, azathioprine, methotrexate and more recently, rituximab, are the mainstay of therapy. Other treatments include PE, IVIG, and thymectomy. Patients reportedly exhibited a heterogenous response to immunomodulation.
Antiepileptics can be used for symptomatic relief of peripheral nerve hyperexcitability. Indeed, some patients have exhibited a spontaneous remission of symptoms.
As of 2017, eleven disease-modifying medications have been approved by regulatory agencies for relapsing-remitting multiple sclerosis (RRMS). They are interferon beta-1a, interferon beta-1b, glatiramer acetate, mitoxantrone, natalizumab, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, daclizumab, and ocrelizumab.
Their cost effectiveness as of 2012 is unclear. In May 2016 the FDA approved daclizumab for the treatment of relapsing multiple sclerosis in adults, with requirements for postmarketing studies and submission of a formal risk evaluation and mitigation strategy. In March 2017 the FDA approved ocrelizumab, a humanized anti-CD20 monoclonal antibody, as a treatment for RRMS, with requirements for several Phase IV clinical trials.
In RRMS they are modestly effective at decreasing the number of attacks. The interferons and glatiramer acetate are first-line treatments and are roughly equivalent, reducing relapses by approximately 30%. Early-initiated long-term therapy is safe and improves outcomes. Natalizumab reduces the relapse rate more than first-line agents; however, due to issues of adverse effects is a second-line agent reserved for those who do not respond to other treatments or with severe disease. Mitoxantrone, whose use is limited by severe adverse effects, is a third-line option for those who do not respond to other medications. Treatment of clinically isolated syndrome (CIS) with interferons decreases the chance of progressing to clinical MS. Efficacy of interferons and glatiramer acetate in children has been estimated to be roughly equivalent to that of adults. The role of some newer agents such as fingolimod, teriflunomide, and dimethyl fumarate, as of 2011, is not yet entirely clear.
As of 2017, rituximab was widely used off-label to treat RRMS.
A complete recovery following immunotherapy and tumor removal. Untreated cases died within few months of onset. Some patients have a poor outcome despite sustained immunosuppression, but that is often related to tumor progression or associated with the presence of Abs directed against intracellular Ags such as GAD Abs or amphyphysin Abs, which can reflect the involvement of an additional cytotoxic T-cell mechanism in the progression of the disease.
As of 2017, rituximab has been widely used off-label to treat progressive primary MS. In March 2017 the FDA approved ocrelizumab, as a treatment for primary progressive MS, the first drug to gain that approval, with requirements for several Phase IV clinical trials.
, only one medication, mitoxantrone, has been approved for secondary progressive MS. In this population tentative evidence supports mitoxantrone moderately slowing the progression of the disease and decreasing rates of relapses over two years.
Treatments of proven efficacy are currently limited mostly to herpes viruses and human immunodeficiency virus. The herpes virus is of two types: herpes type 1 (HSV-1, or oral herpes) and herpes type 2 (HSV-2, or genital herpes). Although there is no particular cure; there are treatments that can relieve the symptoms. Drugs like Famvir, Zovirax, and Valtrex are among the drugs used, but these medications can only decrease pain and shorten the healing time. They can also decrease the total number of outbreaks in the surrounding. Warm baths also may relive the pain of genital herpes.
Human Immunodeficiency Virus Infection (HIV) is treated by using a combination of medications to fight against the HIV infection in the body. This is called antiretroviral therapy (ART). ART is not a cure, but it can control the virus so that a person can live a longer, healthier life and reduce the risk of transmitting HIV to others around him. ART involves taking a combination of HIV medicines (called an HIV regimen) every day, exactly as prescribed by the doctor. These HIV medicines prevent HIV Virus from multiplying (making copies of itself in the body), which reduces the amount of HIV in the body. Having less HIV in the body gives the immune system a chance to recover and fight off infections and cancers. Even though there is still some HIV in the body, the immune system is strong enough to fight off infections and cancers. By reducing the amount of HIV in the body, HIV medicines also reduce the risk of transmitting the virus to others. ART is recommended for all people with HIV, regardless of how long they’ve had the virus or how healthy they are. If left untreated, HIV will attack the immune system and eventually progress to AIDS.
There is no evidence-based criteria for treating SPS, and there have been no large controlled trials of treatments for the condition. The rarity of the disease complicates efforts to establish guidelines.
GABA agonists, usually diazepam but sometimes other benzodiazepines, are the primary treatment for SPS. Drugs that increase GABA activity alleviate muscle stiffness caused by a lack of GABAergic tone. They increase pathways that are dependent upon GABA and have muscle relaxant and anticonvulsant effects, often providing symptom relief. Because the condition worsens over time, patients generally require increased dosages, leading to more side effects. For this reason, gradual increase in dosage of benzodiazepines is indicated. Baclofen, a GABA agonist, is generally used when individuals taking high doses of benzodiazepines have high side effects. In some cases it has shown improvements in electrophysiological and muscle stiffness when administered intravenously. Intrathecal baclofen administration may not have long-term benefits though, and there are potential serious side effects.
Treatments that target the autoimmune response are also used. Intravenous immunoglobin is the best second-line treatment for SPS. It often decreases stiffness and improves quality of life and startle reflex. It is generally safe, but there are possible serious side effects and it is expensive. The European Federation of Neurological Societies suggests it be used when disabled patients do not respond well to diazepam and baclofen. Steroids, rituximab, and plasma exchange have been used to suppress the immune system in SPS patients, but the efficacy of these treatments is unclear. Botulinum toxin has been used to treat SPS, but it does not appear to have long-term benefits and has potential serious side effects. In paraneoplastic cases, tumors must be managed for the condition to be contained. Opiates are sometimes used to treat severe pain, but in some cases they exacerbate symptoms.
Currently the mechanism of spread and infection is unknown despite the tedious epidemiological, clinical, and neurological studies that have been conducted. Recent Studies show Horizontal Disease Transmission, or the transmission of a disease from one individual to another of the same generation. It appears that VE is an infectious disease; however, the incubation period would have to be very extensive (in excess of 5 years). Many infected individuals attribute the initial symptoms as a result of a plunge in frigid waters. So far, no causative agent has been found in blood, spinal fluid, or brain tissue.
Treatment (which is based on supportive care) is as follows:
Pyrimethamine-based maintenance therapy is often used to treat Toxoplasmic Encephalitis (TE), which is caused by Toxoplasma gondii and can be life-threatening for people with weak immune systems. The use of highly active antiretroviral therapy (HAART), in conjunction with the established pyrimethamine-based maintenance therapy, decreases the chance of relapse in patients with HIV and TE from approximately 18% to 11%. This is a significant difference as relapse may impact the severity and prognosis of disease and result in an increase in healthcare expenditure.
Central nervous system nerve regeneration would be able to repair or regenerate the damage caused to the spinal cord. It would restore functions lost due to the disease.
- Engineering endogenous repair
Currently, there exists a hydrogel based scaffold which acts as a channel to deliver nerve growth-enhancing substrates while providing structural support. These factors would promote nerve repairs to the target area. Hydrogels' macroporous properties would enable attachment of cells and enhance ion and nutrient exchange. In addition, hydrogels' biodegradability or bioresolvability would prevent the need for surgical removal of the hydrogel after drug delivery. It means that it would be dissolved naturally by the body's enzymatic reaction.
- Biochemical repair
- Stem cell based therapies
The possibility for nerve regeneration after injury to the spinal cord was considered to be limited because of the absence of major neurogenesis. However, Joseph Altman showed that cell division does occur in the brain which allowed potential for stem cell therapy for nerve regeneration. The stem cell-based therapies are used in order to replace cells lost and injured due to inflammation, to modulate the immune system, and to enhance regeneration and remyelination of axons. Neural stem cells (NSC) have the potential to integrate with the spinal cord because in the recent past investigations have demonstrated their potential for differentiation into multiple cell types that are crucial to the spinal cord. Studies show that NSCs that were transplanted into a demyelinating spinal cord lesion were found to regenerate oligodendrocytes and Schwann cells, and completely remyelinated axons.
Patients with CFS benefit from a well-balanced diet and eating regularly (eating little and often), including slow-release starchy foods in meals and snacks. Although elimination diets are not generally recommended, many people experience relief of CFS symptoms with these diets, including gastrointestinal complaints. To avoid the risk of malnutrition, they should be supervised by a dietitian.
In the classic presentation of the disease death usually occurs within 3 years, however there are rarely both fast and slower progressions. Faster deterioration in cases of acute fulminant SSPE leads to death within 3 months of diagnosis.
If the diagnosis is made during stage 1 of the SSPE infection then it may be possible to treat the disease with oral isoprinosine (Inosiplex) and intraventricular interferon alfa, but the response to these drugs varies from patient to patient. However, once SSPE progresses to stage 2 then it is universally fatal in all occurrences. The standard rate of decline spans anywhere between 1–3 years after the onset of the infection. The progression of each stage is unique to the sufferer and cannot be predicted although the pattern or symptoms/signs can be.
Although the prognosis is bleak for SSPE past stage 1, there is a 5% spontaneous remission rate—this may be either a full remission that may last many years or an improvement in condition giving a longer progression period or at least a longer period with the less severe symptoms.
Antidepressants are mostly ineffective in treating CFS. Antiviral and immunological therapies have provided some benefit, but are limited by their side effects.
Steroid replacement therapy is not effective.
There is some preliminary evidence that the immunomodulatory medication rintatolimod improves exercise capacity, as well as cognitive function and quality of life, based on two trials. The US FDA has repeatedly denied commercial approval, citing numerous deficiencies in both trials, and concluding that the available evidence is insufficient to demonstrate its safety or efficacy in CFS.
Antibiotics are the primary treatment. The specific approach to their use is dependent on the individual affected and the stage of the disease. For most people with early localized infection, oral administration of doxycycline is widely recommended as the first choice, as it is effective against not only "Borrelia" bacteria but also a variety of other illnesses carried by ticks. Doxycycline is contraindicated in children younger than eight years of age and women who are pregnant or breastfeeding; alternatives to doxycycline are amoxicillin, cefuroxime axetil, and azithromycin. Individuals with early disseminated or late infection may have symptomatic cardiac disease, refractory Lyme arthritis, or neurologic symptoms like meningitis or encephalitis. Intravenous administration of ceftriaxone is recommended as the first choice in these cases; cefotaxime and doxycycline are available as alternatives.
These treatment regimens last from one to four weeks. If joint swelling persists or returns, a second round of antibiotics may be considered. Outside of that, a prolonged antibiotic regimen lasting more than 28 days is not recommended as no clinical evidence shows it to be effective. IgM and IgG antibody levels may be elevated for years even after successful treatment with antibiotics. As antibody levels are not indicative of treatment success, testing for them is not recommended.