Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
A 2013 Cochrane review assessed clinical studies on surgical (open reduction) and non-surgical (closed reduction) management of mandible fractures that do not involve the condyle. The review found insufficient evidence to recommend the effectiveness of any single intervention.
Minor nasal fractures may be allowed to heal on their own provided there is not significant cosmetic deformity. Ice and pain medication may be prescribed to ease discomfort during the healing process. For nasal fractures where the nose has been deformed, manual alignment may be attempted, usually with good results. Injuries involving other structures (Types 2 and 3) must be recognized and treated surgically.
The best treatment for condylar fractures is controversial. There are two main options, namely closed reduction or open reduction and fixation. Closed reduction may involve intermaxillary fixation, where the jaws are splinted together in the correct position for a period of weeks. Open reduction involves surgical exposure of the fracture site, which can be carried out via incisions within the mouth or incisions outside the mouth over the area of the condyle. Open reduction is sometimes combined with use of an endoscope to aid visualization of fracture site. Although closed reduction carries a risk of the bone healing out of position, with consequent alteration of the bite or the creation of facial asymmetry, it does not risk temporary damage to the facial nerve or result in any facial scar that accompanies open reduction. A systematic review was unable to find sufficient evidence of the superiority of one method over another in the management of condylar fractures. Paediatric condylar fractures are especially problematic, owing to the remaining growth potential and possibility of ankylosis of the joint. Early mobilization is often recommended as in the Walker protocol.
Non-displaced or minimally displaced fractures may be treated conservatively. Open reduction and internal fixation is reserved for cases that are severely angulated or comminuted. The purpose of fixation is to restore the normal appearance of the face. Specific attention is given to the position of the malar eminence and reduction of orbital volume by realigning the zygoma and sphenoid. Failure to correct can result in rotational deformity and increase the volume of the orbit, causing the eye to sink inwards.
Fractures with displacement require surgery consisting of fracture reduction with miniplates, microplates and screws. Gillie's approach is used for depressed zygomatic fractures. The prognosis of tripod fractures is generally good. In some cases there may be persistent post-surgical facial asymmetry, which can require further treatment.
A Cochrane review of low-intensity pulsed ultrasound to speed healing in newly broken bones found insufficient evidence to justify routine use. Other reviews have found tentative evidence of benefit. It may be an alternative to surgery for established nonunions.
Vitamin D supplements combined with additional calcium marginally reduces the risk of hip fractures and other types of fracture in older adults; however, vitamin D supplementation alone did not reduce the risk of fractures.
This treatment consists of aligning a bone or bones by a gentle, steady pulling action. The pulling may be transmitted to the bone or bones by a metal pin through a bone or by skin tapes. This is a preliminary treatment used in preparation for other secondary treatments.
Culture and sensitivity of the wound site determines the choice of antibiotic. Repeated culture and sensitivity testing is often carried out in OM since the treatment is prolonged and antibiotic resistance may occur, when a change in the drug may be required.
Treatment of this fracture depends on the severity of the fracture. An undisplaced fracture may be treated with a cast alone. A fracture with mild angulation and displacement may require closed reduction. Significant angulation and deformity may require an open reduction and internal fixation. An open fracture will always require surgical intervention.
This treatment is only used when an orthopedic surgeon assigns it to restore the fractured bone to its original function. This method positions the bones to their exact location, but there is a risk for infection and other complications. The procedure involves the orthopedist performing surgery on the bone to align the bone fragments, followed by the placement of special screws or metal plates to the outer surface of the bone. The fragments can also be held together by running metal rods through the marrow in the center of the bone.
Medication can be prescribed to ease the pain. Antibiotics and tetanus vaccination may be used if the bone breaks through the skin. Often, they are treated without surgery. In severe cases, surgery may be done.
Surgical methods of treating fractures have their own risks and benefits, but usually surgery is performed only if conservative treatment has failed, is very likely to fail, or likely to result in a poor functional outcome. With some fractures such as hip fractures (usually caused by osteoporosis), surgery is offered routinely because non-operative treatment results in prolonged immobilisation, which commonly results in complications including chest infections, pressure sores, deconditioning, deep vein thrombosis (DVT), and pulmonary embolism, which are more dangerous than surgery. When a joint surface is damaged by a fracture, surgery is also commonly recommended to make an accurate anatomical reduction and restore the smoothness of the joint.
Infection is especially dangerous in bones, due to the recrudescent nature of bone infections. Bone tissue is predominantly extracellular matrix, rather than living cells, and the few blood vessels needed to support this low metabolism are only able to bring a limited number of immune cells to an injury to fight infection. For this reason, open fractures and osteotomies call for very careful antiseptic procedures and prophylactic use of antibiotics.
Occasionally, bone grafting is used to treat a fracture.
Sometimes bones are reinforced with metal. These implants must be designed and installed with care. "Stress shielding" occurs when plates or screws carry too large of a portion of the bone's load, causing atrophy. This problem is reduced, but not eliminated, by the use of low-modulus materials, including titanium and its alloys. The heat generated by the friction of installing hardware can accumulate easily and damage bone tissue, reducing the strength of the connections. If dissimilar metals are installed in contact with one another (i.e., a titanium plate with cobalt-chromium alloy or stainless steel screws), galvanic corrosion will result. The metal ions produced can damage the bone locally and may cause systemic effects as well.
The use of surgery to treat a Jefferson fracture is somewhat controversial. Non-surgical treatment varies depending on if the fracture is stable or unstable, defined by an intact or broken transverse ligament and degree of fracture of the anterior arch. An intact ligament requires the use of a soft or hard collar, while a ruptured ligament may require traction, a halo or surgery. The use of rigid halos can lead to intracranial infections and are often uncomfortable for individuals wearing them, and may be replaced with a more flexible alternative depending on the stability of the injured bones, but treatment of a stable injury with a halo collar can result in a full recovery. Surgical treatment of a Jefferson fracture involves fusion or fixation of the first three cervical vertebrae; fusion may occur immediately, or later during treatment in cases where non-surgical interventions are unsuccessful. A primary factor in deciding between surgical and non-surgical intervention is the degree of stability as well as the presence of damage to other cervical vertebrae.
Though a serious injury, the long-term consequences of a Jefferson's fracture are uncertain and may not impact longevity or abilities, even if untreated. Conservative treatment with an immobilization device can produce excellent long-term recovery.
Treatment is surgical, and usually is able to be performed once life-threatening injuries are stabilized, to allow the patient to survive the general anesthesia needed for invasive orthopedic restructuring. First a "frontal bar" is used, which refers to the thickened frontal bone above the frontonasal sutures and the superior orbital rim. The facial bones are suspended from the bar by open reduction and internal fixation with titanium plates and screws, and each fracture is fixed, first at its superior attachment to the bar, then at the inferior attachment to the displaced bone. For stability, the zygomaticofrontal suture is usually replaced first, and the palate and alveolar ridge are usually fixed last. Finally, after the horizontal and vertical maxillary buttresses are stabilized, the orbital fractures are fixed last.
Initial treatment is typically in a cast, without any weight being placed on it, for at least six weeks. If after this period of time healing has not occurred a further six weeks of casting may be recommended. Up to half, however may not heal after casting.
In athletes or if the pieces of bone are separated by more than 2 mm surgery may be considered. Otherwise surgery is recommended if healing does not occur after 12 weeks of casting.
Preventive and restorative care are important as well as esthetics as a consideration. This ensures preservation of the patient's vertical face height between their upper and lower teeth when they bite together. The basis of treatment is standard throughout the different types of DI where prevention, preservation of occlusal face height, maintenance of function, and aesthetic needs are priority. Preventive efforts can limit pathology occurring within the pulp, which may render future endodontic procedures less challenging, with better outcomes.
- Challenges are associated with root canal treatment of teeth affected by DI due to pulp chamber and root canal obliteration, or narrowing of such spaces.
- If root canal treatment is indicated, it should be done in a similar way like with any other tooth. Further consideration is given for restoring the root-treated tooth as it has weaker dentine which may not withstand the restoration.
Preservation of occlusal face height may be tackled by use of stainless steel crowns which are advocated for primary teeth where occlusal face height may be hugely compromised due to loss of tooth tissue as a result of attrition, erosion of enamel.
In most cases, full-coverage crowns or veneers (composite/porcelain) are needed for aesthetic appearance, as well as to prevent further attrition. Another treatment option is bonding, putting lighter enamel on the weakened enamel of the teeth and with lots of treatments of this bonding, the teeth appear whiter to the eye, but the teeth on the inside and under that cover are still the same. Due to the weakened condition of the teeth, many common cosmetic procedures such as braces and bridges are inappropriate for patients with Dentinogenesis imperfecta and are likely to cause even more damage than the situation they were intended to correct.
Dental whitening (bleaching) is contraindicated although it has been reported to lighten the color of DI teeth with some success; however, because the discoloration is caused primarily by the underlying yellow-brown dentin, this alone is unlikely to produce normal appearance in cases of significant discoloration.
If there is considerable attrition, overdentures may be prescribed to prevent further attrition of remaining teeth and for preserving the occlusal face height.
The first line treatment should be reduction of movements for 6 to 12 weeks. Wooden-soled shoes or a cast should be given for this purpose. In rare cases in which stress fracture occurs with a cavus foot, plantar fascia release may be appropriate.
Galeazzi fractures are best treated with open reduction of the radius and the distal radio-ulnar joint. It has been called the "fracture of necessity," because it necessitates open surgical treatment in the adult. Nonsurgical treatment results in persistent or recurrent dislocations of the distal ulna. However, in skeletally immature patients such as children, the fracture is typically treated with closed reduction.
All patients should follow-up with an ophthalmologist within 1 week of the fracture. To prevent orbital emphysema, patients are advised to avoid blowing of the nose. Nasal decongestants are commonly used. It is also common practice to administer prophylactic antibiotics when the fracture enters a sinus, although this practice is largely anecdotal. Amoxicillin-clavulanate and azithromycin are most commonly used. Oral corticosteroids are used to decrease swelling.
Endodontic intervention can help conserve the existing health of affected permanent teeth. It is difficult to perform an endodontic therapy on teeth that develop abscesses as a resultant of obliteration of the pulp chambers and root canals. An alternative to conventional therapy would be retrograde filling and periapical curettage. However, these therapies are not recommended for teeth with roots that are too short.
All impacted teeth, unless otherwise contraindicated, are considered for surgical removal. Thus, dental extractions will often take place. The type of extraction (simple or surgical) often depends on the location of the teeth.
In some cases, for aesthetic purposes, a surgeon may wish to expose the canine. This may be achieved through open or closed exposure. Studies show no advantage of one method over another.
Teeth with short thin roots and marked cervical constrictions are less favourable for indirect restorations such as crown placements. If endodontics treatment fails, and abscess develops around the root apex, extraction of the affected teeth would be the best treatment option. Dentures or over dentures can be considered, as rehabilitation until growth is completed. Cast partial dentures could also be an alternative treatment option and it only works if there are a few teeth that has enough root length to serve as retentive purpose.
The arm must be supported by use of a splint or sling to keep the joint stable and decrease the risk of further damage. Usually, a figure-of-eight splint that wraps the shoulders to keep them forced back is used and the arm is placed in a clavicle strap for comfort.
Current practice is generally to provide a sling, and pain relief, and to allow the bone to heal itself, monitoring progress with X-rays every week or few weeks. Surgery is employed in 5–10% of cases. However, a recent study supports primary plate fixation of completely displaced midshaft clavicular fractures in active adult patients.
If the fracture is at the lateral end, the risk of nonunion is greater than if the fracture is of the shaft.
Surgery is indicated if there is enophthalmos greater than 2 mm on imaging, Double vision on primary or inferior gaze, entrapment of extraocular muscles, or the fracture involves greater than 50% of the orbital floor. When not surgically repaired, most blowout fractures heal spontaneously without significant consequence.
Surgical repair of a "blowout" is rarely undertaken immediately; it can be safely postponed for up to two weeks, if necessary, to let the swelling subside. Surgery to place an orbital implant leaves little or no scarring and the recovery period is usually brief. Hopefully, the surgery will provide a permanent cure, but sometimes it provides only partial relief from double vision or a sunken eye. Reconstruction is usually performed with a titanium mesh or porous polyethylene through a transconjunctival or subciliary incision. More recently, there has been success with endoscopic, or minimally invasive, approaches.
The treatment aims are to eliminate the bacteria from the exposed surface of the root(s) and to establish the anatomy of the tooth, so that better plaque control can be achieved. Treatment plans for patients differ depending on the local and anatomical factors.
For Grade I furcation, scaling and polishing, root surface debridement or furcationplasty could be done if suitable.
For Grade II furcation, furcationplasty, open debridement, tunnel preparation, root resection, extraction, guided tissue regeneration (GTR) or enamel matrix derivative could be considered.
As for Grade III furcation, open debridement, tunnel preparation, root resection, GTR or tooth extraction could be performed if appropriate.
Tooth extraction is usually considered if there is extensive loss of attachment or if other treatments will not obtain good result (i.e. achieving a nice gingival contour to allow good plaque control).