Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Head circumference measurements should be obtained regularly and monitored carefully to detect hydrocephalus. Neurosurgical procedures to relieve hydrocephalus are important. A ventriculoperitoneal shunt may be required in some infants. A pediatric cardiologist should be consulted to manage high-output failure, if present. Often patients need to be intubated. In most cases, the fistulous arteries feeding into the Vein of Galen must be blocked, thereby reducing the blood flow into the vein. Open surgery has a high morbidity and mortality. Recent advances over the past few decades have made endovascular embolization the preferred method of treatment. These treatments are preferred because they offer little threat to the surrounding brain tissue. However, there have been several reported cases of arteriovenous malformations recurring. The young age of many patients, the complex vascular anatomy, and the sensitive location of the Vein of Galen offer considerable challenges to surgeons. Another treatment option is Radiotherapy. Radiotherapy, also called radiosurgery, involves the use of focused beams to damage the blood vessel. Radiotherapy is often not pursued as a treatment because the effects of the procedure can take months or years and there is risk of damaging adjacent brain tissue.
Surgery is not always an option when the anatomy of the malformation creates too much of a risk. Recent improvements in endovascular procedures have made many cases, which were not surgically accessible, treatable. Endovascular treatments involve delivering drugs, balloons, or coils to the site of the malformation through blood vessels via catheters. These treatments work by limiting blood flow through the vein. There is, however, still risk of complications from endovascular treatments. The wall of the vein can be damaged during the procedure and, in some cases, the emboli can become dislodged and travel through the vascular system. Two-dimensional echocardiography with color-flow imaging and pulsed Doppler ultrasound was used to evaluate one fetus and five neonates with a Vein of Galen malformation. Color-flow imaging and pulsed Doppler ultrasonography provided anatomical and pathophysiological information regarding cardiac hemodynamics and intracranial blood flow; with the patient's clinical status, these methods provided a reliable, noninvasive means to evaluate the effectiveness of therapy and the need for further treatment in neonates with Vein of Galen malformations. When none of these procedures are viable, shunting can be used to ameliorate the pressure inside the varix. Seizures usually are managed with antiepileptic medications.
The surgical treatment involves the resection of the extracranial venous package and ligation of the emissary communicating vein. In some cases of SP, surgical excision is performed for cosmetic reasons. The endovascular technique has been described by transvenous approach combined with direct puncture and the recently endovascular embolization with Onyx.
One approach used for treatment is embolization. A six-vessel angiogram is employed to determine the vascular supply to the fistula. Detachable coils, liquid embolic agents like NBCA, and onyx, or combinations of both are injected into the blood vessel to occlude the DAVF. Preoperative embolization can also be used to supplement surgery.
DAVFs are also managed surgically. The operative approach varies depending on the location of the lesion.
Stereotactic radiosurgery
Stereotactic radiosurgery is used obliterating DAVFs post-embolization, and is considered an important adjunct. Use of this method, however, is limited to benign DAVFs that have failed other treatments.
Treatment depends on the severity and symptoms. Treatments include:
- Endovascular stenting.
- Renal vein re-implantation.
- Gonadal vein embolization.
An acute nosebleed may be managed with a variety of measures, such as packing of the nasal cavity with absorbent swabs or gels. Removal of the packs after the bleeding may lead to reopening of the fragile vessels, and therefore lubricated or atraumatic packing is recommended. Some patients may wish to learn packing themselves to deal with nosebleeds without having to resort to medical help.
Frequent nosebleeds can be prevented in part by keeping the nostrils moist, and by applying saline solution, estrogen-containing creams or tranexamic acid; these have few side effects and may have a small degree of benefit. A number of additional modalities has been used to prevent recurrent bleeding if simple measures are unsuccessful. Medical therapies include oral tranexamic acid and estrogen; the evidence for these is relatively limited, and estrogen is poorly tolerated by men and possibly carries risks of cancer and heart disease in women past the menopause. Nasal coagulation and cauterization may reduce the bleeding from telangiectasias, and is recommended before surgery is considered. However, it is highly recommended to use the least heat and time to prevent septal perforations and excessive trauma to the nasal mucosa that are already susceptible to bleeding. Sclerotherapy is another option to manage the bleeding. This process involves injecting a small amount of an aerated irritant (detergent such as sodium tetradecyl sulfate) directly into the telangiectasias. The detergent causes the vessel to collapse and harden, resulting in scar tissue residue. This is the same procedure used to treat varicose veins and similar disorders.
It may be possible to embolize vascular lesions through interventional radiology; this requires passing a catheter through a large artery and locating the maxillary artery under X-ray guidance, followed by the injection into the vessel of particles that occlude the blood vessels. The benefit from the procedure tends to be short-lived, and it may be most appropriate in episodes of severe bleeding.
To more effectively minimize recurrence and severity of epistaxis, other options may be used in conjunction with therapies listed above. Intravenously administered anti-VEGF substances such as bevacizumab (brand name Avastin), pazopinab and thalidomide or its derivatives interfere with the production of new blood vessels that are weak and therefore prone to bleeding. Due to the past experiences with prescribing thalidomide to pregnant women to alleviate symptoms of nausea and the terrible birth defects that followed, thalidomide is a last resort therapy. Additionally, thalidomide can cause neuropathy. Though this can be mitigated by tinkering with dosages and prescribing its derivatives such as lenolidomide and pomalidomide, many doctors prefer alternative VEGF inhibitors. Bevacizumab has been shown to significantly reduce the severity of epistaxis without side effects.
If other interventions have failed, several operations have been reported to provide benefit. One is septal dermoplasty or Saunders' procedure, in which skin is transplanted into the nostrils, and the other is Young's procedure, in which the nostrils are sealed off completely.
Currently there is no cure for PWS. Treatment differs from person to person and depends on the extent and severity of the blood vessels malformations and the degree of correction possible. The treatments can only control for the symptoms and often involve a multidisciplinary care as mentioned in diagnosis. AVMs and AVFs are treated with surgery or with embolization. If there are differences in the legs because of overgrowth in the affected limb, then the patient is referred to an orthopedist. If legs are affected to a minimal degree, then the patient may find heel inserts to be useful as they adjust for the different lengths in the legs and can walk normally.The port-wine stains may be treated by dermatologists. Supportive care is necessary and may include compression garments. These garments are tight-fitting clothing on the affected limb and helps with reducing pain and swelling. This can also help with protecting the limb from bumps and scrapes that cause bleeding. Also again based on the symptoms, the doctors may recommend antibiotics or pain medications.
Surgical care might also be an option for PWS patients. Surgeons may perform debulking procedure in which abnormal and overgrown tissues are removed. If PWS is affecting a foot or leg, the limbs can become quite large. And orthopedic surgeon can operate on the limb to reshape the limb. If the growth of the limb is more than one inch a procedure called epiphysiodesis may be performed. This procedure interrupts the growth of the leg and stops the leg from growing too big.
Other treatment options include: embolization and laser therapy. Embolization includes a substance injected by an interventional radiologists that can help in the elimination of the abnormal connections between the arteries and veins. According to Parkes Weber syndrome—Diagnostic and management paradigms: A systematic review, published in July 2017, reported that embolization alone or in combination with surgical removal of arteriovenous malformations leads to significant clinical improvement. Laser therapy can also help lighten capillary malformations and can speed up the healing process of the bleeding lesions.
Also other specialists are needed for dealing with the progression of the disease such as: physical therapists, occupational therapists and counselors. Physical therapists can help ease the pain and increase the range of movements of the arm or leg that is overgrown. Occupational therapists could help with the development of motor skills impeded by physical problems. The classic port-wine stains may make the patient feel uncomfortable and counselors can help with the psychological and social issues.
PWS is a progressive condition and advances with age. It is dependent on: the extent of the disease and overgrowth, condition of the patient’s heart, if the blood vessels are responsive to treatment, overall health of the patient, tolerance of medications and treatments. Based on these factors the prognosis is fair to good. The deformity and overgrowth tend to progress with time until epiphyseal closure. A lot of medical attention is needed to correct the blood vessels.
Surgical treatment is best, when it can be performed. Pressure within the portal vein is measured as the shunt is closed, and it must be kept below 20 cm HO or else portal hypertension will ensue. Methods of shunt attenuation should aim to slowly occlude the vessel over several weeks to months in order to avoid complications associated with portal hypertension. These methods include ameroid ring constrictors, cellophane banding, intravascular or percutaneous silicone hydraulic occluders. The most common methods of attenuation used by veterinarians are ameroid ring constrictors and cellophane banding. Both methods have reportedly good outcomes in both cats and dogs, although the true composition of readily sourced cellophane has been found to be made from plastics (inert) and not cellulose (stimulates a fibrous reaction). Recently, a commercial supplier of regenerated cellulose based cellophane for veterinarians has been established for use of cellophane banding for portosystemic shunts in dogs and cats. Complete closure of extrahepatic shunts results in a very low recurrence rate, while incomplete closure results in a recurrence rate of about 50 percent. However, not all dogs with extrahepatic shunts tolerate complete closure (16 to 68 percent). Intrahepatic shunts are much more difficult to surgically correct than extrahepatic shunts due to their hidden nature, large vessel size, and greater tendency toward portal hypertension when completely closed. When surgery is not an option, PSS is treated as are other forms of liver failure. Dietary protein restriction is helpful to lessen signs of hepatic encephalopathy, and antibiotics such as neomycin or metronidazole and other medicines such as lactulose can reduce ammonia production and absorption in the intestines. The prognosis is guarded for any form of PSS.
The skin lesions of HHT can be disfiguring, and may respond to treatment with long-pulsed . Skin lesions in the fingertips may sometimes bleed and cause pain. Skin grafting is occasionally needed to treat this problem.
With regards to digestive tract lesions, mild bleeding and mild resultant anemia is treated with iron supplementation, and no specific treatment is administered. There is limited data on hormone treatment and tranexamic acid to reduce bleeding and anemia. Severe anemia or episodes of severe bleeding are treated with endoscopic argon plasma coagulation (APC) or laser treatment of any lesions identified; this may reduce the need for supportive treatment. The expected benefits are not such that repeated attempts at treating lesions are advocated. Sudden, very severe bleeding is unusual—if encountered, alternative causes (such as a peptic ulcer) need to be considered—but embolization may be used in such instances.
Management of the underlying defect is proportional to the severity of the clinical presentation. Leg swelling and pain is best evaluated by vascular specialists (vascular surgeons, interventional cardiologists, interventional radiologists) who both diagnose and treat arterial and venous diseases to ensure that the cause of the extremity pain is evaluated. The diagnosis needs to be confirmed with some sort of imaging that may include magnetic resonance venography, venogram and usually confirmed with intravascular ultrasound because the flattened vein may not be noticed on conventional venography. In order to prevent prolonged swelling or pain from the consequences of the backed up blood from the compressed iliac vein, flow needs to be improved out of the leg. Uncomplicated cases may be managed with compression stockings.
Severe May-Thurner syndrome may require thrombolysis if there is a recent onset of thrombosis, followed by angioplasty and stenting of the iliac vein after confirming the diagnosis with a venogram or an intravascular ultrasound. A stent may be used to support the area from further compression following angioplasty. As the name implies, there classically is not a thrombotic component in these cases, but thrombosis may occur at any time.
If the patient has extensive thrombosis, it may be appropriate to consider pharmacologic and/or mechanical (also known as pharmacomechanical) thrombectomy. This is currently being studied to determine whether this will decrease the incidence of post-thrombotic syndrome.
Historically, the treatment of arterial aneurysms has been limited to either surgical intervention, or watchful waiting in combination with control of blood pressure. In recent years, endovascular or minimally invasive techniques have been developed for many types of aneurysms. Aneurysm Clips are used for surgical procedure i.e. clipping of aneurysms.
Treatment can be either conservative or active. Active treatments can be divided into surgical and non-surgical treatments. Newer methods including endovenous laser treatment, radiofrequency ablation and foam sclerotherapy appear to work as well as surgery for varices of the greater saphenous vein.
Surgical treatment of CVI attempts a cure by physically changing the veins with incompetent valves. Surgical treatments for CVI include the following:
- Linton procedures (i.e. subfascial ligation of perforating veins in the lower extremity, an older treatment)
- Ligation. Tying off a vein to prevent blood flow
- Vein stripping. Removal of the vein.
- Surgical repair.
- Endovenous Laser Ablation
- Vein transplant.
- Subfascial endoscopic perforator surgery. Tying off the vein with an endoscope.
- Valve repair (experimental)
- Valve transposition (experimental)
- Hemodynamic surgeries.
There are currently two treatment options for brain aneurysms: surgical clipping or endovascular coiling. There is currently debate in the medical literature about which treatment is most appropriate given particular situations.
Surgical clipping was introduced by Walter Dandy of the Johns Hopkins Hospital in 1937. It consists of a craniotomy to expose the aneurysm and closing the base or neck of the aneurysm with a clip. The surgical technique has been modified and improved over the years.
Endovascular coiling was introduced by Guido Guglielmi at UCLA in 1991. It consists of passing a catheter into the femoral artery in the groin, through the aorta, into the brain arteries, and finally into the aneurysm itself. Platinum coils initiate a clotting reaction within the aneurysm that, if successful fill the aneurysm dome and prevent its rupture. Flow diverter can be used but not without complications sometimes.
A number of options are available from saphenous stripping to phlebectomy and CHIVA.
The treatment for Bonnet–Dechaume–Blanc syndrome is controversial due to a lack of consensus on the different therapeutic procedures for treating arteriovenous malformations. The first successful treatment was performed by Morgan et al. They combined intracranial resection, ligation of ophthalmic artery, and selective arterial ligature of the external carotid artery, but the patient did not have retinal vascular malformations.
If lesions are present, they are watched closely for changes in size. Prognosis is best when lesions are less than 3 cm in length. Most complications occur when the lesions are greater than 6 cm in size. Surgical intervention for intracranial lesions has been done successfully. Nonsurgical treatments include embolization, radiation therapy, and continued observation. Arterial vascular malformations may be treated with the cyberknife treatment. Possible treatment for cerebral arterial vascular malformations include stereotactic radiosurgery, endovascular embolization, and microsurgical resection.
When pursuing treatment, it is important to consider the size of the malformations, their locations, and the neurological involvement. Because it is a congenital disorder, there are not preventative steps to take aside from regular follow ups with a doctor to keep an eye on the symptoms so that future complications are avoided.
Venous Insufficiency Conservative, Hemodynamic and Ambulatory treatment" is an ultrasound guided, minimally invasive surgery strategic for the treatment of varicose veins, performed under local anaesthetic. CHIVA is an abbreviation from the French "Cure Conservatrice et Hemodynamique de l'Insufficience Veineuse en Ambulatoire".
According to NIH clinical trials.gov, research on the port-wine stain and its relation to polymorphisms of RASA1 has commenced in November 2010 and expected to end in November 2019. The purpose of the study is to assess how the port-wine stains can lead to complex syndromes such as PWS. Currently there is little knowledge about the epidemiology of the stains and how they progress with the disease. The research is ongoing and the results are yet to be published.
In an another review published in July 2017 (discussed in treatments and prognosis), Banzic et. al. discussed clinical findings that embolization works really well in patients with PWS. Also, embolization along with surgical resection that targets arteriovenous malformations reliably leads to significant clinical improvements.
Treatment for Thrombotic Storm may include lifelong anticoagulation therapy and/or thrombolytic therapy, plasmapherisis, and corticosteroids. Studies have shown that when anticoagulant therapy is withheld recurrence of thrombosis usually follows. INR is closely monitored in the course of treatment.
A minority of patients can be treated medically with sodium restriction, diuretics to control ascites, anticoagulants such as heparin and warfarin, and general symptomatic management. The majority of patients require further intervention. Milder forms of Budd–Chiari may be treated with surgical shunts to divert blood flow around the obstruction or the liver itself. Shunts must be placed early after diagnosis for best results. The TIPS is similar to a surgical shunt: it accomplishes the same goal but has a lower procedure-related mortality—a factor that has led to a growth in its popularity. If all the hepatic veins are blocked, the portal vein can be approached via the intrahepatic part of inferior vena cava, a procedure called DIPS (direct intrahepatic portocaval shunt). Patients with stenosis or vena caval obstruction may benefit from angioplasty. Limited studies on thrombolysis with direct infusion of urokinase and tissue plasminogen activator into the obstructed vein have shown moderate success in treating Budd–Chiari syndrome; however, it is not routinely attempted.
Liver transplantation is an effective treatment for Budd–Chiari. It is generally reserved for patients with fulminant liver failure, failure of shunts or progression of cirrhosis that reduces the life expectancy to 1 year. Long-term survival after transplantation ranges from 69–87%. The most common complications of transplant include rejection, arterial or venous thromboses and bleeding due to anticoagulation. Up to 10% of patients may have a recurrence of Budd–Chiari syndrome after the transplant.
A treatment plan may involve lactulose, enemas, and use of antibiotics such as rifaximin, neomycin, vancomycin, and the quinolones. Restriction of dietary protein was recommended but this is now refuted by a clinical trial which shows no benefit. Instead, the maintenance of adequate nutrition is now advocated.
Treatment consists of painkillers and surgical ablation of the dilated vein. This can be accomplished with open abdominal surgery (laparotomy) or keyhole surgery (laparoscopy). Recently, the first robot-assisted surgery was described.
Another approach to treatment involves catheter-based embolisation, often preceded by phlebography to visualise the vein on X-ray fluoroscopy.
Ovarian vein coil embolisation is an effective and safe treatment for pelvic congestion syndrome and lower limb varices of pelvic origin. Many patients with lower limb varices of pelvic origin respond to local treatment i.e. ultrasound guided sclerotherapy. In those cases, ovarian vein coil embolisation should be considered second line treatment to be used if veins recur in a short time period i.e. 1–3 years. This approach allows further pregnancies to proceed if desired. Coil embolisation is not appropriate if a future pregnancy is possible. This treatment has largely superseded operative options.
Coil embolisation requires exclusion of other pelvic pathology, expertise in endovascular surgery, correct placement of appropriate sized coils in the pelvis and also in the upper left ovarian vein, careful pre- and post-procedure specialist vascular ultrasound imaging, a full discussion of the procedure with the patient i.e. informed consent. Complications, such as coil migration, are rare but reported. Their sequelae are usually minor.
If a Nutcracker compression (see below) is discovered, stenting of the renal vein should be considered before embolization of the ovarian vein. Reducing outflow obstruction should always be the main objective.
Sinus pericranii (SP) is a rare disorder characterized by a congenital (or occasionally, acquired) epicranial venous malformation of the scalp. Sinus pericranii is an abnormal communication between the intracranial and extracranial venous drainage pathways. Treatment of this condition has mainly been recommended for aesthetic reasons and prevention of hemorrhage.
Warfarin and vitamin K antagonists are anticoagulants that can be taken orally to reduce thromboembolic occurrence. Where a more effective response is required, heparin can be given (by injection) concomitantly. As a side effect of any anticoagulant, the risk of bleeding is increased, so the international normalized ratio of blood is monitored. Self-monitoring and self-management are safe options for competent patients, though their practice varies. In Germany, about 20% of patients were self-managed while only 1% of U.S. patients did home self-testing (according to one 2012 study). Other medications such as direct thrombin inhibitors and direct Xa inhibitors are increasingly being used instead of warfarin.