Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
CBPS is commonly treated with anticonvulsant therapy to reduce seizures. Therapies include anticonvulsant drugs, adrenocorticotropic hormone therapy, and surgical therapy, including focal corticectomy and callosotomy. Special education, speech therapy, and physical therapy are also used to help children with intellectual disability due to CBPS.
Treatment of Foix–Chavany–Marie syndrome depends on the onset of symptoms and involves a multidisciplinary approach. Drugs are used in neurological recovery depending on the etiological classification of FCMS. FCMS caused by epilepsy, specifically resulting in the development of lesions in the bilateral and subcortical regions of the brain can be treated using antiepileptic drugs to reverse abnormal EEG changes and induce complete neurological recovery. In addition, a hemispherectomy can be performed to reverse neurological deficits and control the seizures. This procedure can result in a complete recovery from epileptic seizures. Physical therapy is also used to manage symptoms and improve quality of life. Classical FCMS resulting in the decline of ones ability to speak and swallow can be treated using neuromuscular electrical stimulation and traditional dysphagia therapy. Speech therapy further targeting dysphagia can strengthen oral musculature using modified feeding techniques and postures. Therapeutic feedings include practicing oral and lingual movements using ice chips. In addition, different procedures can be performed by a neurosurgeon to alleviate some symptoms.
Treatment is symptomatic, and may include anti-seizure medication and special or supplemental education consisting of physical, occupational, and speech therapies.
Treatment plans will vary depending on the severity of the condition and its evidences in each patient.
Areas that will probably need to be evaluated and assessed include speech, vision, hearing and EEG. Treatment measures may include physical therapy, occupational therapy, Speech therapy, anti-seizure drugs and orthotic devices. Surgery may be needed to assuage spastic motor problems. Various supportive measures such as joint contractures that could prevent complications.
Genetic counseling may also be recommended
There is currently no specific treatment for megalencephaly, however periodic head measurements may be assessed to determine the rate of brain growth.
Those individuals who develop neurological disorders may be prescribed anti-epileptic drugs for seizures. Studies have shown that reducing epilepsy can increase cell apoptosis and reduce the proliferation of neurons that ultimately leads to brain overgrowth.
Since there are very few treatment methods focused on managing megalencephaly, future research is targeted at inhibiting mutation of the pathway. However, this next step could be met with several complications as understanding the underlying mechanism of the mutation is a difficult task. The genetic coding that initiates a single mutation is sporadic and patterns are hard to detect in many cases.
Even thought very little research has been done to create inhibitors of the PI3K-AKT pathway, several pharmaceutical companies have begun to focus their interests in designing a prevention method for this purpose.
Treatment for those with lissencephaly is symptomatic and depends on the severity and locations of the brain malformations. Supportive care may be needed to help with comfort and nursing needs. Seizures may be controlled with medication and hydrocephalus may require shunting. If feeding becomes difficult, a gastrostomy tube may be considered.
Currently there is no cure for dysmetria itself as it is actually a symptom of an underlying disorder. However, isoniazid and clonazepam have been used to treat dysmetria. Frenkel exercises treat dysmetria. There have also been numerous reported cases of chiropractic neurology as an effective holistic treatment for dysmetria. Cannabis has been used in trials in the U.K. and displayed some success, though it is not legal to use in some U.S. states.
Treatment consists of finding ways to bring the patient's attention toward the left, usually done incrementally, by going just a few degrees past midline, and progressing from there. Rehabilitation of neglect is often carried out by neuropsychologists, occupational therapist,
speech-language pathologists, neurologic music therapists, physical therapists, optometrists and orthoptists.
Forms of treatment that have been tested with variable reports of success include prismatic adaptation, where a prism lens is worn to pull the vision of the patient towards the left, constrained movement therapy where the "good" limb is constrained in a sling to encourage use of the contralesional limb. Eye-patching has similarly been used, placing a patch over the "good" eye. Pharmaceutical treatments have mostly focused on dopaminergic therapies such as bromocriptine, levodopa, and amphetamines, though these tests have had mixed results, helping in some cases and accentuating hemispatial neglect in others. Caloric vestibular stimulation (CVS) has been shown to bring about a brief remission in some cases. however this technique has been known to elicit unpleasant side-effects such as nystagmus, vertigo and vomiting.
A study done by Schindler and colleagues examined the use of neck muscle vibration on the contralesional posterior neck muscles to induce diversion of gaze from the subjective straight ahead. Subjects received 15 consecutive treatment sessions and were evaluated on different aspects of the neglect disorder including perception of midline, and scanning deficits. The study found that there is evidence that neck muscle stimulation may work, especially if combined with visual scanning techniques. The improvement was evident 2 months after the completion of treatment.
Other areas of emerging treatment options include the use of prisms, visual scanning training, mental imagery training, video feedback training, trunk rotation, galvanic vestibular stimulation (GVS), transcranial magnetic stimulation (TMS) and transcranial direct-current stimulation (tDCS). Of these emerging treatment options, the most studied intervention is prism adaptation and there is evidence of relatively long-term functional gains from comparatively short-term usage. However, all of these treatment interventions (particularly the stimulation techniques) are relatively new and randomised, controlled trial evidence is still limited. Further research is mandatory in this field of research in order to provide more support in evidence-based practice.
In a review article by Pierce & Buxbaum (2002), they concluded that the evidence for Hemispheric Activation Approaches, which focuses on moving the limb on the side of the neglect, has conflicting evidence in the literature. The authors note that a possible limitation in this approach is the requirement for the patients to actively move the neglected limb, which may not be possible for many patients. Constraint-Induced Therapy (CIT), appears to be an effective, long-term treatment for improving neglect in various studies. However, the use of CIT is limited to patients who have active control of wrist and hand extension. Prism Glasses, Hemispatial Glasses, and Eye-Patching have all appear to be effective in improving performance on neglect tests. Caloric Stimulation treatment appears to be effective in improving neglect; however, the effects are generally short-term. The review also suggests that Optokinetic Stimulation is effective in improving position sense, motor skills, body orientation, and perceptual neglect on a short-term basis. As with Caloric Stimulation treatment, long-term studies will be necessary to show its effectiveness. A few Trunk Rotation Therapy studies suggest its effectiveness in improving performance on neglect tests as well as the Functional Independence Measure (FIM). Some less studied treatment possibilities include treatments that target Dorsal Stream of visual processing, Mental Imagery Training, and Neck Vibration Therapy. Trunk rotation therapies aimed at improving postural disorders and balance deficits in patients with unilateral neglect, have demonstrated optimistic results in regaining voluntary trunk control when using specific postural rehabilitative devices. One such device is the Bon Saint Côme apparatus, which uses spatial exploratory tasks in combination with auditory and visual feedback mechanisms to develop trunk control. The Bon Saint Côme device has been shown to be effective with hemiplegic subjects due to the combination of trunk stability exercises, along with the cognitive requirements needed to perform the postural tasks.
The current treatments for CCAS focus on relieving the symptoms. One treatment is a cognitive-behavioral therapy (CBT) technique that involves making the patient aware of his or hers cognitive problems. For example, many CCAS patients struggle with multitasking. With CBT, the patient would have to be aware of this problem and focus on just one task at a time. This technique is also used to relieve some motor symptoms. In a case study with a patient who had a stroke and developed CCAS, improvements in mental function and attention were achieved through reality orientation therapy and attention process training. Reality orientation therapy consists of continually exposing the patient to stimuli of past events, such as photos. Attention process training consists of visual and auditory tasks that have been shown to improve attention. The patient struggled in applying these skills to “real-life” situations. It was the help of his family at home that significantly helped him regain his ability to perform activities of daily living. The family would motivate the patient to perform basic tasks and made a regular schedule for him to follow.
Transcranial magnetic stimulation (TMS) has also been proposed to be a possible treatment of psychiatric disorders of the cerebellum. One study used TMS on the vermis of patients with schizophrenia. After stimulation, the patients showed increased happiness, alertness and energy, and decreased sadness. Neuropsychological testing post-stimulation showed improvements in working memory, attention, and visual spatial skill. Another possible method of treatment for CCAS is doing exercises that are used to relieve the motor symptoms. These physical exercises have been shown to also help with the cognitive symptoms.
Medications that help relieve deficits in traumatic brain injuries in adults have been proposed as candidates to treat CCAS. Bromocriptine, a direct D2 agonist, has been shown to help with deficits in executive function and spatial learning abilities. Methylphendiate has been shown to help with deficits in attention and inhibition. Neither of these drugs has yet been tested on a CCAS population. It may also be that some of the symptoms of CCAS improve over time without any formal treatment. In the original report of CCAS, four patients with CCAS were re-examined one to nine months after their initial neuropsychological evaluation. Three of the patients showed improvement in deficits without any kind of formal treatment, though executive function was still found to be one standard deviation below average. In one patient, the deficits worsened over time. This patient had cerebellar atrophy and worsened in visual spatial abilities, concept formation, and verbal memory. It should be noted that none of these treatments were tested on a large enough sample to determine if they would help with the general CCAS population. Further research needs to be done on treatments for CCAS.
Researchers now are testing different possibilities for treating dysmetria and ataxia. One opportunity for treatment is called rehearsal by eye movement. It is believed that visually guided movements require both lower- and higher-order visual functioning by first identifying a target location and then moving to acquire what is sought after. In one study, researchers used visually guided stepping which is parallel to visually guided arm movements to test this treatment. The patients suffered from saccadic dysmetria which in turn caused them to overshoot their movements 3. The patients first walked normally and were then told to twice review the area that was to be walked through 3. After rehearsal with eye movements, the patients improved their motor performance. Researchers believe that prior rehearsal with the eyes might be enough for a patient who suffers from motor dysmetria as a result of saccadic dysmetria to complete a motor task with enhanced spatial awareness.
Research has also been done for those patients who suffer from MS. Deep brain stimulation (DBS) remains a viable possibility for some MS patients though the long-term effects of this treatment are currently under review. The subjects who have undergone this treatment had no major relapse for six months and disabling motor function problems. Most subjects benefited from the implantation of the electrodes and some reported that their movement disorder was gone after surgery. However, these results are limiting at this time because of the small range of subjects who were used for the experiment and it is unknown whether this is a viable option for all MS patients who suffer from motor control problems.
Because pachygyria is a structural defect no treatments are currently available other than symptomatic treatments, especially for associated seizures. Another common treatment is a gastrostomy (insertion of a feeding tube) to reduce possible poor nutrition and repeated aspiration pneumonia.
Treating auditory verbal agnosia with intravenous immunoglobulin (IVIG) is controversial because of its inconsistency as a treatment method. Although IVIG is normally used to treat immune diseases, some individuals with auditory verbal agnosia have responded positively to the use of IVIG. Additionally, patients are more likely to relapse when treated with IVIG than other pharmacological treatments. IVIG is, thus, a controversial treatment as its efficacy in treating auditory verbal agnosia is dependent upon each individual and varies from case to case.
In regard to anosognosia for neurological patients, no long-term treatments exist. As with unilateral neglect, caloric reflex testing (squirting ice cold water into the left ear) is known to temporarily ameliorate unawareness of impairment. It is not entirely clear how this works, although it is thought that the unconscious shift of attention or focus caused by the intense stimulation of the vestibular system temporarily influences awareness. Most cases of anosognosia appear to simply disappear over time, while other cases can last indefinitely. Normally, long-term cases are treated with cognitive therapy to train patients to adjust for their inoperable limbs (though it is believed that these patients still are not "aware" of their disability). Another commonly used method is the use of feedback – comparing clients' self-predicted performance with their actual performance on a task in an attempt to improve insight.
Neurorehabilitation is difficult because, as anosognosia impairs the patient's desire to seek medical aid, it may also impair their ability to seek rehabilitation. A lack of awareness of the deficit makes cooperative, mindful work with a therapist difficult. In the acute phase, very little can be done to improve their awareness, but during this time, it is important for the therapist to build a therapeutic alliance with patients by entering their phenomenological field and reducing their frustration and confusion. Since severity changes over time, no single method of treatment or rehabilitation has emerged or will likely emerge.
In regard to psychiatric patients, empirical studies verify that, for individuals with severe mental illnesses, lack of awareness of illness is significantly associated with both medication non-compliance and re-hospitalization. Fifteen percent of individuals with severe mental illnesses who refuse to take medication voluntarily under any circumstances may require some form of coercion to remain compliant because of anosognosia. Coercive psychiatric treatment is a delicate and complex legal and ethical issue.
One study of voluntary and involuntary inpatients confirmed that committed patients require coercive treatment because they fail to recognize their need for care. The patients committed to the hospital had significantly lower measures of insight than the voluntary patients.
Anosognosia is also closely related to other cognitive dysfunctions that may impair the capacity of an individual to continuously participate in treatment. Other research has suggested that attitudes toward treatment can improve after involuntary treatment and that previously committed patients tend later to seek voluntary treatment.
There is much research that needs to be conducted on CCAS. A necessity for future research is to conduct more longitudinal studies in order to determine the long-term effects of CCAS. One way this can be done is by studying cerebellar hemorrhage that occurs during infancy. This would allow CCAS to be studied over a long period to see how CCAS affects development. It may be of interest to researchers to conduct more research on children with CCAS, as the survival rate of children with tumors in the cerebellum is increasing. Hopefully future research will bring new insights on CCAS and develop better treatments.
Treatment of Aicardi syndrome primarily involves management of seizures and early/continuing intervention programs for developmental delays.
Additional comorbidities and complications sometimes seen with Aicardi syndrome include porencephalic cysts and hydrocephalus, and gastro-intestinal problems. Treatment for porencephalic cysts and/or hydrocephalus is often via a shunt or endoscopic of the cysts, though some require no treatment. Placement of a feeding tube, fundoplication, and surgeries to correct hernias or other gastrointestinal structural problems are sometimes used to treat gastro-intestinal issues.
Given the complexity of the medical problems facing ideomotor apraxia patients, as they are usually suffering from a multitude of other problems, it is difficult to ascertain the impact that it has on their ability to function independently. Deficits due to Parkinson's or Alzheimer's disease could very well be sufficient to mask or make irrelevant difficulties arising from the apraxia. Some studies have shown ideomotor apraxia to independently diminish the patient's ability to function on their own. The general consensus seems to be that ideomotor apraxia does have a negative impact on independence in that it can reduce an individual's ability to manipulate objects, as well as diminishing the capacity for mechanical problem solving, owing to the inability to access information about how familiar parts of the unfamiliar system function. A small subset of patients has been known to spontaneously recover from apraxia; this is rare, however. One possible hope is the phenomenon of hemispheric shift, where functions normally performed by one hemisphere can shift to the other in the event that the first is damaged. This seems to necessitate, however, that some portion of the function is associated with the other hemisphere to begin with. There is dispute over whether the right hemisphere of the cortex is involved at all in the praxis system, as some evidence from patients with severed corpus callosums indicates it may not be.
Although there is little that can be done to substantially reverse the effects of ideomotor apraxia, Occupational Therapy can be effective in helping patients regain some functional control. Sharing the same approach in treating ideational apraxia, this is achieved by breaking a daily task (e.g. combing hair) into separate components and teaching each distinct component individually. With ample repetition, proficiency in these movements can be acquired and should eventually be combined to create a single pattern of movement.
In incidents where tumors and their pressure effects are the cause of pure word deafness, removal of the tumor has been shown to allow for the return of most auditory verbal comprehension.
There is no cure for this condition. Treatment is supportive and varies depending on how symptoms present and their severity. Some degree of developmental delay is expected in almost all cases of M-CM, so evaluation for early intervention or special education programs is appropriate. Rare cases have been reported with no discernible delay in academic or school abilities.
Physical therapy and orthopedic bracing can help young children with gross motor development. Occupational therapy or speech therapy may also assist with developmental delays. Attention from an orthopedic surgeon may be required for leg length discrepancy due to hemihyperplasia.
Children with hemihyperplasia are thought to have an elevated risk for certain types of cancers. Recently published management guidelines recommend regular abdominal ultrasounds up to age eight to detect Wilms' tumor. AFP testing to detect liver cancer is not recommended as there have been no reported cases of hepatoblastoma in M-CM patients.
Congenital abnormalities in the brain and progressive brain overgrowth can result in a variety of neurological problems that may require intervention. These include hydrocephalus, cerebellar tonsillar herniation (Chiari I), seizures and syringomyelia. These complications are not usually congenital, they develop over time often presenting complications in late infancy or early childhood, though they can become problems even later. Baseline brain and spinal cord MRI imaging with repeat scans at regular intervals is often prescribed to monitor the changes that result from progressive brain overgrowth.
Assessment of cardiac health with echocardiogram and EKG may be prescribed and arrhythmias or abnormalities may require surgical treatment.
The most effective course of treatment for dysprosody has been speech therapy. The first step in therapy is practice drills which consist of repeating phrases using different prosodic contours, such as pitch, timing, and intonation. Typically a clinician will say either syllables, words, phrases, or nonsensical sentences with certain prosodic contours, and the patient repeats them with the same prosodic contours. Treatment following the lines of the principles of motor learning (PML) was found to improve the production of lexical stress contrasts. Once a patient is able to effectively complete this drill, they can start with more advanced forms of speech therapy. Upon completion of therapy, most people can identify prosodic cues in natural situations, such as normal conversation. Speech therapy has proven most effective for linguistic dysprosody because therapy for emotional dysprosody requires much more effort and is not always successful. One way that people learn to cope with emotional dysprosody is to explicitly state their emotions, rather than relying on prosodic cues.
Over time, there have also been cases of people suffering from dysprosody gaining their native accent back with no course of treatment. Since the part of the brain responsible for dysprosody has not definitely been discovered, nor has the mechanism for the brain processes which cause dysprosody been found, there has not been much treatment for the disease by means of medication.
Indifference to illness may have an adverse impact on a patient's engagement in neurological rehabilitation, cognitive rehabilitation and physical rehabilitation. Patients are not likely to implement rehabilitation for a condition about which they are indifferent. Although anosognosia often resolves in days to weeks after stroke, anosodiaphoria often persists. Therefore, the therapist has to be creative in their rehabilitation approach in order to maintain the interest of the patient.
The prognosis for children with NMDs varies depending on the specific disorder and the degree of brain abnormality and subsequent neurological signs and symptoms.
Pachygyria (from the Greek "pachy" meaning "thick" or "fat" gyri) is a congenital malformation of the cerebral hemisphere. It results in unusually thick convolutions of the cerebral cortex. Typically, children have developmental delay and seizures, the onset and severity depending on the severity of the cortical malformation. Infantile spasms are common in affected children, as is intractable epilepsy.
Congenital bilateral perisylvian syndrome (CBPS) is a rare neurological disease characterized by paralysis of certain facial muscles and epileptic seizures.
No specific treatment for CADASIL is available. While most treatments for CADASIL patients' symptoms – including migraine and stroke – are similar to those without CADASIL, these treatments are almost exclusively empiric, as data regarding their benefit to CADASIL patients is limited. Antiplatelet agents such as aspirin, dipyridamole, or clopidogrel might help prevent strokes; however, anticoagulation may be inadvisable given the propensity for microhemorrhages. Control of high blood pressure is particularly important in CADASIL patients. Short-term use of atorvastatin, a statin-type cholesterol-lowering medication, has not been shown to be beneficial in CADASIL patients' cerebral hemodynamic parameters, although treatment of comorbidities such as high cholesterol is recommended. Stopping oral contraceptive pills may be recommended. Some authors advise against the use of triptan medications for migraine treatment, given their vasoconstrictive effects, although this sentiment is not universal. As with other individuals, people with CADASIL should be encouraged to quit smoking.
In one small study, around 1/3 of patients with CADASIL were found to have cerebral microhemorrhages (tiny areas of old blood) on MRI.
L-arginine, a naturally occurring amino acid, has been proposed as a potential therapy for CADASIL, but as of 2017 there are no clinical studies supporting its use. Donepezil, normally used for Alzheimer's Disease, was not shown not to improve executive functioning in CADASIL patients.