Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Corticosteroids such as prednisone improve recovery at 6 months and are thus recommended. Early treatment (within 3 days after the onset) is necessary for benefit with a 14% greater probability of recovery.
Physiotherapy can be beneficial to some individuals with Bell’s palsy as it helps to maintain muscle tone of the affected facial muscles and stimulate the facial nerve. It is important that muscle re-education exercises and soft tissue techniques be implemented prior to recovery in order to help prevent permanent contractures of the paralyzed facial muscles. To reduce pain, heat can be applied to the affected side of the face. There is no high quality evidence to support the role of electrical stimulation for Bell's palsy.
This is most commonly achieved through the use of fresnel prisms. These slim flexible plastic prisms can be attached to the patient's glasses, or to plano glasses if the patient has no refractive error, and serve to compensate for the inward misalignment of the affected eye. Unfortunately, the prism only correct for a fixed degree of misalignment and, because the affected individual's degree of misalignment will vary depending upon their direction of gaze, they may still experience diplopia when looking to the affected side. The prisms are available in different strengths and the most appropriate one can be selected for each patient. However, in patients with large deviations, the thickness of the prism required may reduce vision so much that binocularity is not achievable. In such cases it may be more appropriate simply to occlude one eye temporarily. Occlusion would never be used in infants though both because of the risk of inducing stimulus deprivation amblyopia and because they do not experience diplopia.
Other management options at this initial stage include the use of botulinum toxin, which is injected into the ipsilateral medial rectus (botulinum toxin therapy of strabismus). The use of BT serves a number of purposes. Firstly, it helps to prevent the contracture of the medial rectus which might result from its acting unopposed for a long period. Secondly, by reducing the size of the deviation temporarily it might allow prismatic correction to be used where this was not previously possible, and, thirdly, by removing the pull of the medial rectus it may serve to reveal whether the palsy is partial or complete by allowing any residual movement capability of the lateral rectus to operate. Thus, the toxin works both therapeutically, by helping to reduce symptoms and enhancing the prospects for fuller ocular movements post-operatively, and diagnostically, by helping to determine the type of operation most appropriate for each patient.
Where full recovery has not occurred after the 9 to 12 month 'watch and wait' period, management will take either a 'conservative' or a surgical course.
Congenital fourth cranial nerve palsy can be treated with strabismus surgery, where muscle attachment sites on the globe are modified to realign the eyes. Some eye doctors prefer conservative or no management of congenital fourth nerve palsy.
Other eye doctors recommend surgery early in a patient's life to prevent the compensatory torticollis and facial asymmetry that develop with age.
Prism lenses set to make minor optical changes in the vertical alignment may be prescribed instead of or after surgery to fine-tune the correction. Prism lenses do not address torsional misalignment and this may limit their use in certain cases. An additional consideration of prism lenses is that they must be worn at all times. Prism lenses reduce vertical fusional demands by allowing the eyes to rest in their vertically misaligned state. When they are removed the patient may experience vertical diplopia they find hard to resolve due to the rested state of their eyes.
Cases of congenital fourth nerve palsy vary in magnitude and way they affect the motion of the superior oblique muscle. Therefore different surgeries are available dependent upon the type of misalignment. Sometimes surgery on more than one eye muscle is required. In some simpler, unilateral cases a single surgery may suffice. In these cases the main problem is that the inferior oblique muscle of the same eye acts unopposed by the weakened superior oblique muscle, pulling the eye up. An example of a safe and effective procedure is a disinsertion of the inferior oblique muscle to allow it to reattach itself further down the globe of the eye. This acts to 'weaken' its action and allow the eye to move back into a more neutral alignment.
In all cases of congenital fourth nerve palsy, it is important to see an experienced strabismologist about management/treatment options. A strabismologist is an ophthalmologist (eye doctor) specialising in eye movement disorders.
In many cases recovery happens spontaneously and no treatment is needed. This spontaneous recovery can occur because distance between the injury location and the deltoid muscle is small. Spontaneous recovery may take as long as 12 months.
In order to combat pain and inflammation of nerves, medication may be prescribed.
Surgery is an option, but it has mixed results within the literature and is usually avoided because only about half of people who undergo surgery see any positive results from it. Some suggest that surgical exploration should be considered if no recovery occurs after 3 to 6 months. Some surgical options include nerve grafting, neurolysis, or nerve reconstruction. Surgery results are typically better for younger patients (under 25) and for nerve grafts less than six centimeters.
For some, recovery does not occur and surgery is not possible. In these cases, most patients’ surrounding muscles can compensate, allowing them to gain a satisfactory range of motion back. Physical therapy or Occupational therapy will help retrain and gain muscle tone back.
There is no treatment of conjugate gaze palsy itself, so the disease or condition causing the gaze palsy must be treated, likely by surgery. As stated in the causes section, the gaze palsy may be due to a lesion caused by stroke or a condition. Some of the conditions such as Progressive supra nuclear palsy are not curable, and treatment only includes therapy to regain some tasks, not including gaze control. Other conditions such as Niemann-Pick disease type C have limited drug therapeutic options. Stroke victims with conjugate gaze palsies may be treated with intravenous therapy if the patent presents early enough, or with a surgical procedure for other cases.
Practical surgical procedures used for treating synkinesis are neurolysis and selective myectomy. Neurolysis has been shown to be effective in relieving synkinesis but only temporarily and unfortunately symptoms return much worse than originally. Selective myectomy, in which a synkinetic muscle is selectively resected, is a much more effective technique that can provide permanent relief and results in a low recurrence rate; unfortunately, it also has many post-operative complications that can accompany including edema, hematoma, and ecchymosis. Therefore, surgical procedures are very minimally used by doctors and are used only as last-resort options for patients who do not respond well to non-invasive treatments.
Botox (botulinum toxin) is a new and versatile tool for the treatment of synkinesis. Initially used for reducing hyperkinesis after facial palsy, Botox was later attempted on patients with post-facial palsy synkinesis to reduce unwanted movements. The effects of Botox have shown to be remarkable, with synkinetic symptoms disappearing within 2 or 3 days. The most common treatment targets are the orbicularis oculi, depressor anguli oris (DAO), mentalis, platysma and the contralateral depressor labii inferioris muscles. Due to the short span of Botox effects though, patients must come back to the doctor for re-injection approximately every 3 months. More notable is that in a majority of patients, various synkinetic movements completely disappeared after 2-3 sessions of trimonthly Botox injections.
A more specific synkinesis, crocodile tears syndrome (hyperlacrimation upon eating), has been shown to respond exceedingly well to Botox injection. Botox is injected directly into the lacrimal gland and has shown to reduce hyperlacrimation within 24–48 hours. The procedure was shown to be simple and safe with very little chance of side-effects (although on rare occasions ptosis can occur due to botulinum toxin diffusion). Furthermore, reduction in hyper-lacrimation was shown to last longer than the expected 3 months (about 12 months).
Since Botox can mimic facial paralysis, an optimized dose has been determined that reduces involuntary synkinesis of the muscle while not affecting muscle tone.
There are several options of treatment when iatrogenic (i.e., caused by the surgeon) spinal accessory nerve damage is noted during surgery. For example, during a functional neck dissection that injures the spinal accessory nerve, injury prompts the surgeon to cautiously preserve branches of C2, C3, and C4 spinal nerves that provide supplemental innervation to the trapezius muscle. Alternatively, or in addition to intraoperative procedures, postoperative procedures can also help in recovering the function of a damaged spinal accessory nerve. For example, the Eden-Lange procedure, in which remaining functional shoulder muscles are surgically repositioned, may be useful for treating trapezius muscle palsy.
Medications that impede the release of excitatory neurotransmitters have been used to control or prevent spasms. Treatment with intrathecal baclofen, a gamma-aminobutyric acid (GABA) agonist, decreases muscle tone and has been shown to decrease the frequency of muscle spasms in ADCP patients. Tetrabenazine, a drug commonly used in the treatment of Huntington's disease, has been shown to be effective treating chorea.
There are several different modes of treatment for people with paralysis in their upper limbs. For example, behavioral and environmental treatments may include physiotherapy, occupational therapy, motor learning, strength training, and neurodevelopment treatment. Another treatment may be through the use of splints and casts. Electrophysical agents may be used such as neuromuscular electrical stimulation (NMES). Sometimes pharmacological treatments are necessary such as Botulinum toxin type A. On more severe cases surgery of the upper limbs may be required.
Physical therapy and Occupational Therapy are staple treatments of ADCP. Physical therapy is initiated soon after diagnosis and typically focuses on trunk strength and maintaining posture. Physical therapy helps to improve mobility, range of motion, functional ability, and quality of life. Specific exercises and activities prescribed by a therapist help to prevent muscles from deteriorating or becoming locked in position and help to improve coordination. Occupational therapy interventions for children with CP can include feeding, dressing, bathing, toileting, grooming, pencil grasp and handwriting skills, play, and use of adaptive equipment.
Mild cases of hemifacial spasm may be managed with sedation or carbamazepine (an anticonvulsant drug). Microsurgical decompression and botulinum toxin injections are the current main treatments used for hemifacial spasm.
Botulinum toxin is highly effective in the treatment of hemifacial spasm. It has a success rate equal to that of surgery, but repeated injections may be required every 3 to 6 months. The injections are administered as an outpatient or office procedure. Whilst side effects occur, these are never permanent. Repeated injections over the years remain highly effective. Whilst the toxin is expensive, the cost of even prolonged courses of injections compares favourably with the cost of surgery. Patients with HFS should be offered a number of treatment options. Very mild cases or those who are reluctant to have surgery or Botulinum toxin injections can be offered medical treatment, sometimes as a temporary measure. In young and fit patients microsurgical decompression and Botulinum injections should be discussed as alternative procedures. In the majority of cases, and especially in the elderly and the unfit, Botulinum toxin injection is the treatment of first choice. Imaging procedures should be done in all unusual cases of hemifacial spasm and when surgery is contemplated. Patients with hemifacial spasm were shown to have decreased sweating after botulinum toxin injections. This was first observed in 1993 by Khalaf Bushara and David Park. This was the first demonstration of nonmuscular use of BTX-A. Bushara further showed the efficacy of botulinum toxin in treating hyperhidrosis (excessive sweating). BTX-A was later approved for the treatment of excessive underarm sweating. This is technically known as severe primary axillary hyperhidrosis – excessive underarm sweating with an unknown cause which cannot be managed by topical agents (see focal hyperhidrosis).
There is no single course of medical treatment or cure for Möbius syndrome. Treatment is supportive and in accordance with symptoms. If they have difficulty nursing, infants may require feeding tubes or special bottles to maintain sufficient nutrition. Physical, occupational, and speech therapy can improve motor skills and coordination and can lead to better control of speaking and eating abilities. Often, frequent lubrication with eye drops is sufficient to combat dry eye that results from impaired blinking. Surgery can correct crossed eyes, protect the cornea via tarsorraphy, and improve limb and jaw deformities. Sometimes called smile surgery by the media, muscle transfers grafted from the thigh to the corners of the mouth can be performed to provide the ability to smile. Although "smile surgery" may provide the ability to smile, the procedure is complex and can take twelve hours for each side of the face. Also, the surgery cannot be considered a "cure" for Möbius syndrome, because it does not improve the ability to form other facial expressions.
Sleep is also used as a management technique. An early indication of an episode is tiredness so medication such as melatonin or Buccal midazolam can be administered to induce sleep and avoid the episode.
Those suffering from alternating hemiplegia are often underweight and with the help of dietitians, a meal plan should be developed for times of attack when consumption of food may be difficult.
Primary neuropathy of facial nerve at the time of injury.
Interpositional graft by using sural or greater auricular nerve grafts.
Cranial nerve crossover, this is most commonly seen following nerve sacrifice.
Regional muscle transposition using temporalis muscle\ masseter muscle.
Free muscle transfer like gracilis muscle.
Treatment with the steroid "prednisone" and the antiviral drug "acyclovir 800mg 5 times a day" is controversial, with some studies showing to achieve complete recovery in patients if started within the first three days of facial paralysis, with chances of recovery decreasing as treatment was delayed. Delay of treatment may result in permanent facial nerve paralysis. However, some studies demonstrate that even when steroids are started promptly, only 22% of all patient achieve full recovery of facial paralysis.
Treatment apparently has no effect on the recovery of hearing loss. Diazepam is sometimes used to treat the vertigo.
PBP is aggressive and relentless, and there were no treatments for the disease as of 2005. However, early detection of PBP is the optimal scenario in which doctors can map out a plan for management of the disease. This typically involves symptomatic treatments that are frequently used in many lower motor disorders.
The treatment and management of radial neuropathy can be achieved via the following methods:
- Physical therapy or occupational therapy
- Surgery(depending on the specific area and extent of damage)
- Splinting
Many children affected by alternating hemiplegia also suffer from epilepsy. Seizures may occur during an attack but more often occur between attacks. Anti-epilepsy drugs are given to prevent or lessen the seizures, but the drugs often don’t work and have severe side effects that require the patient to discontinue use. Flunarizine, which blocks calcium channels, is an antiepilepsy drugs used in 50% of patients, and has been shown to shorten the duration of attacks as well as reducing the severity of the attacks. While Flunarizine does not stop the attacks, it is most common drug prescribed to treat those suffering from alternating hemiplegia.
Some babies recover on their own; however, some may require specialist intervention.
Neonatal/pediatric neurosurgery is often required for avulsion fracture repair. Lesions may heal over time and function return. Physiotherapeutic care is often required to regain muscle usage.
Although range of motion is recovered in many children under one year in age, individuals who have not yet healed after this point will rarely gain full function in their arm and may develop arthritis.
The three most common treatments for Erb's Palsy are: Nerve transfers (usually from the opposite arm or limb), Sub Scapularis releases and Latissimus Dorsi Tendon Transfers.
Nerve transfers are usually performed on babies under the age of 9 months since the fast development of younger babies increases the effectiveness of the procedure. They are not usually carried out on patients older than this because when the procedure is done on older infants, more harm than good is done and can result in nerve damage in the area where the nerves were taken from. Scarring can vary from faint scars along the lines of the neck to full "T" shapes across the whole shoulder depending on the training of the surgeon and the nature of the transplant.
Subscapularis releases, however, are not time limited. Since it is merely cutting a "Z" shape into the subscapularis muscle to provide stretch within the arm, it can be carried out at almost any age and can be carried out repeatedly on the same arm; however, this will compromise the integrity of the muscle.
Latissimus Dorsi Tendon Transfers involve cutting the Latissimus Dorsi in half horizontally in order to 'pull' part of the muscle around and attach it to the outside of the biceps. This procedure provides external rotation with varying degrees of success. A side effect may be increased sensitivity of the part of the biceps where the muscle will now lie, since the Latissimus Dorsi has roughly twice the number of nerve endings per square inch of other muscles.
There is no current treatment, however management of hereditary neuropathy with liability to pressure palsy can be done via:
- Occupational therapist
- Ankle/foot orthosis
- Wrist splint (medicine)
- Avoid repetitive movements
The facial nerve is the seventh of 12 cranial nerves. This cranial nerve controls the muscles in the face. Facial nerve palsy is more abundant in older adults than in children and is said to affect 15-40 out of 100,000 people per year. This disease comes in many forms which include congenital, infectious, traumatic, neoplastic, or idiopathic. The most common cause of this cranial nerve damage is Bell's palsy (idiopathic facial palsy) which is a paralysis of the facial nerve. Although Bell's palsy is more prominent in adults it seems to be found in those younger than 20 or older than 60 years of age. Bell's Palsy is thought to occur by an infection of the herpes virus which may cause demyelination and has been found in patients with facial nerve palsy. Symptoms include flattening of the forehead, sagging of the eyebrow, and difficulty closing the eye and the mouth on the side of the face that is affected. The inability to close the mouth causes problems in feeding and speech. It also causes lack of taste, acrimation, and sialorrhea.
The use of steroids can help in the treatment of Bell's Palsy. If in the early stages, steroids can increase the likelihood of a full recovery. This treatment is used mainly in adults. The use of steroids in children has not been proven to work because they seem to recover completely with or without them. Children also tend to have better recovery rates than older adults. Recovery rate also depends on the cause of the facial nerve palsy (e.g. infections, perinatal injury, congenital dysplastic). If the palsy is more severe patients should seek steroids or surgical procedures. Facial nerve palsy may be the indication of a severe condition and when diagnosed a full clinical history and examination are recommended.
Although rare, facial nerve palsy has also been found in patients with HIV seroconversion. Symptoms found include headaches (bitemporal or occipital), the inability to close the eyes or mouth, and may cause the reduction of taste. Few cases of bilateral facial nerve palsy have been reported and is said to only effect 1 in every 5 million per year.