Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
If infection occurs or is suspected, treatment is generally with the antibiotics streptomycin or gentamicin. Doxycycline was previously used. Gentamicin may be easier to obtain than streptomycin. There is also tentative evidence to support the use of fluoroquinolones.
There are no safe, available, approved vaccines against tularemia. However, vaccination research and development continues, with live attenuated vaccines being the most thoroughly researched and most likely candidate for approval. Sub-unit vaccine candidates, such as killed-whole cell vaccines, are also under investigation, however research has not reached a state of public use.
Optimal preventative practices include limiting direct exposure when handling potentially infected animals, such as wearing gloves and face masks while handling potentially infected animals (importantly when skinning deceased animals).
Electrolytes may be replenished with oral rehydration supplements (typically containing salts sodium chloride and potassium chloride).
Appropriate antibiotics, such as ceftriaxone, may be given to kill the bacteria but are not necessary in most cases. Azithromycin has been suggested to be better at treating typhoid in resistant populations than both fluoroquinolone drugs and ceftriaxone. Antibiotic resistance rates are increasing throughout the world, so health care providers should check current recommendations before choosing an antibiotic.
The FDA has published guidelines to help reduce the chance of food-borne salmonellosis. Food must be cooked to 68–72 °C (145–160 °F), and liquids such as soups or gravies must be boiled. Freezing kills some "Salmonella", but it is not sufficient to reliably reduce them below infectious levels. While "Salmonella" is usually heat-sensitive, it does acquire heat resistance in high-fat environments such as peanut butter.
There are no treatment modalities for acute and chronic chikungunya that currently exist. Majority of treatment plans use supportive and symptomatic care like analgesics for pain and anti-inflammatories for inflammation caused by arthritis. In acute stages of this virus, rest, antipyretics and analgesics are used to subside symptoms. Most use non-steroidal anti-inflammatory drugs (NSAIDs). In some cases, joint pain may resolve from treatment but stiffness remains.
Dengue infection's therapeutic management is simple, cost effective and successful in saving lives by adequately performing timely institutionalized interventions. Treatment options are restricted, while no effective antiviral drugs for this infection have been accessible to date. Patients in the early phase of the dengue virus may recover without hospitalization. However, ongoing clinical research is in the works to find specific anti-dengue drugs.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
Methicillin-resistant Staphylococcus aureus (MRSA) evolved from Methicillin-susceptible Staphylococcus aureus (MSSA) otherwise known as common "S. aureus". Many people are natural carriers of "S. aureus", without being affected in any way. MSSA was treatable with the antibiotic methicillin until it acquired the gene for antibiotic resistance. Though genetic mapping of various strains of MRSA, scientists have found that MSSA acquired the mecA gene in the 1960s, which accounts for its pathogenicity, before this it had a predominantly commensal relationship with humans. It is theorized that when this "S. aureus" strain that had acquired the mecA gene was introduced into hospitals, it came into contact with other hospital bacteria that had already been exposed to high levels of antibiotics. When exposed to such high levels of antibiotics, the hospital bacteria suddenly found themselves in an environment that had a high level of selection for antibiotic resistance, and thus resistance to multiple antibiotics formed within these hospital populations. When "S. aureus" came into contact with these populations, the multiple genes that code for antibiotic resistance to different drugs were then acquired by MRSA, making it nearly impossible to control. It is thought that MSSA acquired the resistance gene through the horizontal gene transfer, a method in which genetic information can be passed within a generation, and spread rapidly through its own population as was illustrated in multiple studies. Horizontal gene transfer speeds the process of genetic transfer since there is no need to wait an entire generation time for gene to be passed on. Since most antibiotics do not work on MRSA, physicians have to turn to alternative methods based in Darwinian medicine. However prevention is the most preferred method of avoiding antibiotic resistance. By reducing unnecessary antibiotic use in human and animal populations, antibiotics resistance can be slowed.
Outbreaks of zoonoses have been traced to human interaction with and exposure to animals at fairs, petting zoos, and other settings. In 2005, the Centers for Disease Control and Prevention (CDC) issued an updated list of recommendations for preventing zoonosis transmission in public settings. The recommendations, developed in conjunction with the National Association of State Public Health Veterinarians, include educational responsibilities of venue operators, limiting public and animal contact, and animal care and management.
An emerging infectious disease (EID) is an infectious disease whose incidence has increased in the past 20 years and could increase in the near future. Emerging infections account for at least 12% of all human pathogens. EIDs are caused by newly identified species or strains (e.g. Severe acute respiratory syndrome, HIV/AIDS) that may have evolved from a known infection (e.g. influenza) or spread to a new population (e.g. West Nile fever) or to an area undergoing ecologic transformation (e.g. Lyme disease), or be "reemerging" infections, like drug resistant tuberculosis. Nosocomial (hospital-acquired) infections, such as methicillin-resistant Staphylococcus aureus are emerging in hospitals, and extremely problematic in that they are resistant to many antibiotics. Of growing concern are adverse synergistic interactions between emerging diseases and other infectious and non-infectious conditions leading to the development of novel syndemics. Many emerging diseases are zoonotic - an animal reservoir incubates the organism, with only occasional transmission into human populations.
The most significant zoonotic pathogens causing foodborne diseases are , "Campylobacter", "Caliciviridae", and "Salmonella".
In 2006, a conference held in Berlin was focusing on the issue of zoonotic pathogen effects on food safety, urging governments to intervene, and the public to be vigilant towards the risks of catching food-borne diseases from farm-to-dining table.
Many food outbreaks can be linked to zoonotic pathogens. Many different types of food can be contaminated that have an animal origin. Some common foods linked to zoonotic contaminations include eggs, seafood, meat, dairy, and even some vegetables. Food outbreaks should be handled in preparedness plans to prevent widespread outbreaks and to efficiently and effectively contain outbreaks.
The most common causative organisms are (often intracellular living) bacteria:
- "Chlamydophila pneumoniae": Mild form of pneumonia with relatively mild symptoms.
- "Chlamydophila psittaci": Causes psittacosis.
- "Coxiella burnetii": Causes Q fever.
- "Francisella tularensis": Causes tularemia.
- "Legionella pneumophila": Causes a severe form of pneumonia with a relatively high mortality rate, known as legionellosis or Legionnaires' disease.
- "Mycoplasma pneumoniae": Usually occurs in younger age groups and may be associated with neurological and systemic (e.g. rashes) symptoms.
Atypical pneumonia can also have a fungal, protozoan or viral cause.In the past, most organisms were difficult to culture. However, newer techniques aid in the definitive identification of the pathogen, which may lead to more individualized treatment plans.
Cytauxzoon felis is a protozoal organism transmitted to domestic cats by tick bites, and whose natural reservoir host is the bobcat. "C. felis" has been found in other wild felid species such as Florida bobcat, eastern bobcat, Texas cougar, and a white tiger in captivity. "C. felis" infection is limited to the family felidae which means that "C. felis" poses no zoonotic (transmission to humans) risk or agricultural (transmission to farm animals) risk. Until recently it was believed that after infection with "C. felis", pet cats almost always died. As awareness of "C. felis" has increased it has been found that treatment is not always futile. More cats have been shown to survive the infection than was previously thought. New treatments offer as much as 60% survival rate.
When comparing the bacterial-caused atypical pneumonias with these caused by real viruses (excluding bacteria that were wrongly considered as viruses), the term "atypical pneumonia" almost always implies a bacterial cause and is contrasted with viral pneumonia.
Known viral causes of atypical pneumonia include respiratory syncytial virus (RSV), influenza A and B, parainfluenza, adenovirus, severe acute respiratory syndrome (SARS)
and measles.
SJS constitutes a dermatological emergency. Patients with documented "Mycoplasma" infections can be treated with oral macrolide or oral doxycycline.
Initially, treatment is similar to that for patients with thermal burns, and continued care can only be supportive (e.g. intravenous fluids and nasogastric or parenteral feeding) and symptomatic (e.g., analgesic mouth rinse for mouth ulcer). Dermatologists and surgeons tend to disagree about whether the skin should be debrided.
Beyond this kind of supportive care, no treatment for SJS is accepted. Treatment with corticosteroids is controversial. Early retrospective studies suggested corticosteroids increased hospital stays and complication rates. No randomized trials of corticosteroids were conducted for SJS, and it can be managed successfully without them.
Other agents have been used, including cyclophosphamide and cyclosporin, but none has exhibited much therapeutic success. Intravenous immunoglobulin treatment has shown some promise in reducing the length of the reaction and improving symptoms. Other common supportive measures include the use of topical pain anesthetics and antiseptics, maintaining a warm environment, and intravenous analgesics.
An ophthalmologist should be consulted immediately, as SJS frequently causes the formation of scar tissue inside the eyelids, leading to corneal vascularization, impaired vision, and a host of other ocular problems. Those with chronic ocular surface disease caused by SJS may find some improvement with PROSE treatment (prosthetic replacement of the ocular surface ecosystem treatment).
Lymph node enlargement is recognized as a common sign of infectious, autoimmune, or malignant disease. Examples may include:
- Reactive: acute infection ("e.g.," bacterial, or viral), or chronic infections (tuberculous lymphadenitis, cat-scratch disease).
- The most distinctive sign of bubonic plague is extreme swelling of one or more lymph nodes that bulge out of the skin as "buboes." The buboes often become necrotic and may even rupture.
- Infectious mononucleosis is an acute viral infection caused by Epstein-Barr virus and may be characterized by a marked enlargement of the cervical lymph nodes.
- It is also a sign of cutaneous anthrax and Human African trypanosomiasis
- Toxoplasmosis, a parasitic disease, gives a generalized lymphadenopathy ("Piringer-Kuchinka lymphadenopathy").
- Plasma cell variant of Castleman's disease - associated with HHV-8 infection and HIV infection
- Mesenteric lymphadenitis after viral systemic infection (particularly in the GALT in the appendix) can commonly present like appendicitis.
Less common infectious causes of lymphadenopathy may include bacterial infections such as cat scratch disease, tularemia, brucellosis, or prevotella.
- Tumoral:
- Primary: Hodgkin lymphoma and non-Hodgkin lymphoma give lymphadenopathy in all or a few lymph nodes.
- Secondary: metastasis, Virchow's Node, neuroblastoma, and chronic lymphocytic leukemia.
- Autoimmune: systemic lupus erythematosus and rheumatoid arthritis may have a generalized lymphadenopathy.
- Immunocompromised: AIDS. Generalized lymphadenopathy is an early sign of infection with human immunodeficiency virus (HIV), the virus that causes acquired immunodeficiency syndrome (AIDS). "Lymphadenopathy syndrome" has been used to describe the first symptomatic stage of HIV progression, preceding a diagnosis of AIDS.
- Bites from certain venomous snakes such as the pit viper
- Unknown: Kikuchi disease, progressive transformation of germinal centers, sarcoidosis, hyaline-vascular variant of Castleman's disease, Rosai-Dorfman disease, Kawasaki disease, Kimura disease
Prevention is mainly the role of the state, through the definition of strict rules of hygiene and a public services of veterinary surveying of animal products in the food chain, from farming to the transformation industry and delivery (shops and restaurants). This regulation includes:
- traceability: in a final product, it must be possible to know the origin of the ingredients (originating farm, identification of the harvesting or of the animal) and where and when it was processed; the origin of the illness can thus be tracked and solved (and possibly penalized), and the final products can be removed from the sale if a problem is detected;
- enforcement of hygiene procedures such as HACCP and the "cold chain";
- power of control and of law enforcement of veterinarians.
In August 2006, the United States Food and Drug Administration approved Phage therapy which involves spraying meat with viruses that infect bacteria, and thus preventing infection. This has raised concerns, because without mandatory labelling consumers would not be aware that meat and poultry products have been treated with the spray.
At home, prevention mainly consists of good food safety practices. Many forms of bacterial poisoning can be prevented by cooking it sufficiently, and either eating it quickly or refrigerating it effectively. Many toxins, however, are not destroyed by heat treatment.
Techniques that help prevent food borne illness in the kitchen are hand washing, rinsing produce, preventing cross-contamination, proper storage, and maintaining cooking temperatures. In general, freezing or refrigerating prevents virtually all bacteria from growing, and heating food sufficiently kills parasites, viruses, and most bacteria. Bacteria grow most rapidly at the range of temperatures between , called the "danger zone". Storing food below or above the "danger zone" can effectively limit the production of toxins. For storing leftovers, the food must be put in shallow containers
for quick cooling and must be refrigerated within two hours. When food is reheated, it must reach an internal temperature of or until hot or steaming to kill bacteria.
Food may be contaminated during all stages of food production and retailing. In order to prevent viral contamination, regulatory authorities in Europe have enacted several measures:
- European Commission Regulation (EC) No 2073/2005 of November 15, 2005
- European Committee for Standardization (CEN): Standard method for the detection of norovirus and hepatitis A virus in food products (shellfish, fruits and vegetables, surfaces and bottled water)
- CODEX Committee on Food Hygiene (CCFH): Guideline for the application of general principles of food hygiene for the control of viruses in food
Lymphadenopathy or adenopathy is disease of the lymph nodes, in which they are abnormal in size, number, or consistency. Lymphadenopathy of an inflammatory type (the most common type) is lymphadenitis, producing swollen or enlarged lymph nodes. In clinical practice, the distinction between lymphadenopathy and lymphadenitis is rarely made and the words are usually treated as synonymous. Inflammation of the lymphatic vessels is known as lymphangitis. Infectious lymphadenitides affecting lymph nodes in the neck are often called scrofula.
The term comes from the word lymph and a combination of the Greek words , "adenas" ("gland") and , "patheia" ("act of suffering" or "disease").
Lymphadenopathy is a common and nonspecific sign. Common causes include infections (from minor ones such as the common cold to dangerous ones such as HIV/AIDS), autoimmune diseases, and cancers. Lymphadenopathy is also frequently idiopathic and self-limiting.
Although SJS can be caused by viral infections and malignancies, the main cause is medications. A leading cause appears to be the use of antibiotics, particularly sulfa drugs. Between 100 and 200 different drugs may be associated with SJS. No reliable test exists to establish a link between a particular drug and SJS for an individual case. Determining what drug is the cause is based on the time interval between first use of the drug and the beginning of the skin reaction. Drugs discontinued more than 1 month prior to onset of mucocutaneous physical findings are highly unlikely to cause SJS and TEN. SJS and TEN most often begin between 4 and 28 days after culprit drug administration. A published algorithm (ALDEN) to assess drug causality gives structured assistance in identifying the responsible medication.
SJS may be caused by adverse effects of the drugs vancomycin, allopurinol, valproate, levofloxacin, diclofenac, etravirine, isotretinoin, fluconazole, valdecoxib, sitagliptin, oseltamivir, penicillins, barbiturates, sulfonamides, phenytoin, azithromycin, oxcarbazepine, zonisamide, modafinil, lamotrigine, nevirapine, pyrimethamine, ibuprofen, ethosuximide, carbamazepine, bupropion, telaprevir, and nystatin.
Medications that have traditionally been known to lead to SJS, erythema multiforme, and toxic epidermal necrolysis include sulfonamide antibiotics, penicillin antibiotics, cefixime (antibiotic), barbiturates (sedatives), lamotrigine, phenytoin (e.g., Dilantin) (anticonvulsants) and trimethoprim. Combining lamotrigine with sodium valproate increases the risk of SJS.
Nonsteroidal anti-inflammatory drugs (NSAIDs) are a rare cause of SJS in adults; the risk is higher for older patients, women, and those initiating treatment. Typically, the symptoms of drug-induced SJS arise within a week of starting the medication. Similar to NSAIDs, paracetamol (acetaminophen) has also caused rare cases of SJS. People with systemic lupus erythematosus or HIV infections are more susceptible to drug-induced SJS.
Urticaria is a vascular reaction of the skin characterized by the appearance of wheals, which are firm, elevated swelling of the skin. Angioedema, which can occur alone or with
urticaria, is characterized by a well-defined, edematous swelling that involves subcutaneous tissues, abdominal organs, or upper airway.
- Acquired C1 esterase inhibitor deficiency
- Acute urticaria
- Adrenergic urticaria
- Anaphylaxis
- Aquagenic urticaria
- Cholinergic urticaria
- Chronic urticaria (ordinary urticaria)
- Cold urticaria
- Dermatographism (dermographism)
- Episodic angioedema with eosinophilia (Gleich's syndrome)
- Exercise urticaria (exercise-induced urticaria)
- Galvanic urticaria
- Heat urticaria
- Hereditary angioedema (Quincke's edema)
- Localized heat contact urticaria
- Mast cell-independent urticaria
- Physical urticaria
- Primary cold contact urticaria
- Pressure urticaria (delayed pressure urticaria)
- Reflex cold urticaria
- Schnitzler syndrome
- Secondary cold contact urticaria
- Solar urticaria
- Systemic capillary leak syndrome
- Urticarial allergic eruption
- Urticaria-like follicular mucinosis
- Vibratory angioedema
Many conditions affect the human integumentary system—the organ system covering the entire surface of the body and composed of skin, hair, nails, and related muscle and glands. The major function of this system is as a barrier against the external environment. The skin weighs an average of four kilograms, covers an area of two square meters, and is made of three distinct layers: the epidermis, dermis, and subcutaneous tissue. The two main types of human skin are: glabrous skin, the hairless skin on the palms and soles (also referred to as the "palmoplantar" surfaces), and hair-bearing skin. Within the latter type, the hairs occur in structures called pilosebaceous units, each with hair follicle, sebaceous gland, and associated arrector pili muscle. In the embryo, the epidermis, hair, and glands form from the ectoderm, which is chemically influenced by the underlying mesoderm that forms the dermis and subcutaneous tissues.
The epidermis is the most superficial layer of skin, a squamous epithelium with several strata: the stratum corneum, stratum lucidum, stratum granulosum, stratum spinosum, and stratum basale. Nourishment is provided to these layers by diffusion from the dermis, since the epidermis is without direct blood supply. The epidermis contains four cell types: keratinocytes, melanocytes, Langerhans cells, and Merkel cells. Of these, keratinocytes are the major component, constituting roughly 95 percent of the epidermis. This stratified squamous epithelium is maintained by cell division within the stratum basale, in which differentiating cells slowly displace outwards through the stratum spinosum to the stratum corneum, where cells are continually shed from the surface. In normal skin, the rate of production equals the rate of loss; about two weeks are needed for a cell to migrate from the basal cell layer to the top of the granular cell layer, and an additional two weeks to cross the stratum corneum.
The dermis is the layer of skin between the epidermis and subcutaneous tissue, and comprises two sections, the papillary dermis and the reticular dermis. The superficial papillary dermis with the overlying rete ridges of the epidermis, between which the two layers interact through the basement membrane zone. Structural components of the dermis are collagen, elastic fibers, and ground substance. Within these components are the pilosebaceous units, arrector pili muscles, and the eccrine and apocrine glands. The dermis contains two vascular networks that run parallel to the skin surface—one superficial and one deep plexus—which are connected by vertical communicating vessels. The function of blood vessels within the dermis is fourfold: to supply nutrition, to regulate temperature, to modulate inflammation, and to participate in wound healing.
The subcutaneous tissue is a layer of fat between the dermis and underlying fascia. This tissue may be further divided into two components, the actual fatty layer, or panniculus adiposus, and a deeper vestigial layer of muscle, the panniculus carnosus. The main cellular component of this tissue is the adipocyte, or fat cell. The structure of this tissue is composed of septal (i.e. linear strands) and lobular compartments, which differ in microscopic appearance. Functionally, the subcutaneous fat insulates the body, absorbs trauma, and serves as a reserve energy source.
Conditions of the human integumentary system constitute a broad spectrum of diseases, also known as dermatoses, as well as many nonpathologic states (like, in certain circumstances, melanonychia and racquet nails). While only a small number of skin diseases account for most visits to the physician, thousands of skin conditions have been described. Classification of these conditions often presents many nosological challenges, since underlying etiologies and pathogenetics are often not known. Therefore, most current textbooks present a classification based on location (for example, conditions of the mucous membrane), morphology (chronic blistering conditions), etiology (skin conditions resulting from physical factors), and so on. Clinically, the diagnosis of any particular skin condition is made by gathering pertinent information regarding the presenting skin lesion(s), including the location (such as arms, head, legs), symptoms (pruritus, pain), duration (acute or chronic), arrangement (solitary, generalized, annular, linear), morphology (macules, papules, vesicles), and color (red, blue, brown, black, white, yellow). Diagnosis of many conditions often also requires a skin biopsy which yields histologic information that can be correlated with the clinical presentation and any laboratory data.
Macrophages (pronunciation: /ˈmakrə(ʊ)feɪdʒ/ | , from Greek "μακρός" ("makrós") = large, "φαγείν" ("phageín") = to eat) are a type of white blood cell that engulfs and digests cellular debris, foreign substances, microbes, cancer cells, and anything else that does not have the types of proteins specific to healthy body cells on its surface in a process called phagocytosis. These large phagocytes are found in essentially all tissues, where they patrol for potential pathogens by amoeboid movement. They take various forms (with various names) throughout the body (e.g., histiocytes, Kupffer cells, alveolar macrophages, microglia, and others), but all are part of the mononuclear phagocyte system. Besides phagocytosis, they play a critical role in nonspecific defense (innate immunity) and also help initiate specific defense mechanisms (adaptive immunity) by recruiting other immune cells such as lymphocytes. For example, they are important as antigen presenters to T cells. In humans, dysfunctional macrophages cause severe diseases such as chronic granulomatous disease that result in frequent infections.
Beyond increasing inflammation and stimulating the immune system, macrophages also play an important anti-inflammatory role and can decrease immune reactions through the release of cytokines. Macrophages that encourage inflammation are called M1 macrophages, whereas those that decrease inflammation and encourage tissue repair are called M2 macrophages. This difference is reflected in their metabolism; M1 macrophages have the unique ability to metabolize arginine to the "killer" molecule nitric oxide, whereas rodent M2 macrophages have the unique ability to metabolize arginine to the "repair" molecule ornithine. However, this dichotomy has been recently questioned as further complexity has been discovered.
Human macrophages are about in diameter and are produced by the differentiation of monocytes in tissues. They can be identified using flow cytometry or immunohistochemical staining by their specific expression of proteins such as CD14, CD40, CD11b, CD64, F4/80 (mice)/EMR1 (human), lysozyme M, MAC-1/MAC-3 and CD68.
Macrophages were first discovered by Élie Metchnikoff, a Russian zoologist, in 1884.