Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Typical tumefactive lesions have been found to be responsive to corticosteroids because of their immunosuppressive and anti-inflammatory properties. They restore the blood-brain barrier and induce cell death of T-cells.
No standard treatment exists, but practitioners seem to apply intravenous corticosteroids, followed by plasmapheresis and cyclophosphamide in non-responsive cases High dose intravenous corticosteroids (methylprednisolone 1 g for 3–5 days) followed by oral tapering hasten clinical and radiological improvement in approximately 80% of patients
Plasmapheresis has been reported to work even in the absence of response to corticosteroids
Fatigue is a common symptom and affects the daily life of individuals with MS. Changes in lifestyle are usually recommended to reduce fatigue. These include taking frequent naps and implementing exercise. MS patients who smoke are also advised to stop. Pharmacological treatment include anti-depressants and caffeine. Aspirin has also been experimented with and from clinical trial data, MS patients preferred using aspirin as compared to the placebo in the test. One hypothesis is that aspirin has an effect on the hypothalamus and can affect the perception of fatigue through altering the release of neurotransmitters and the autonomic responses.
As of 2017, eleven disease-modifying medications have been approved by regulatory agencies for relapsing-remitting multiple sclerosis (RRMS). They are interferon beta-1a, interferon beta-1b, glatiramer acetate, mitoxantrone, natalizumab, fingolimod, teriflunomide, dimethyl fumarate, alemtuzumab, daclizumab, and ocrelizumab.
Their cost effectiveness as of 2012 is unclear. In May 2016 the FDA approved daclizumab for the treatment of relapsing multiple sclerosis in adults, with requirements for postmarketing studies and submission of a formal risk evaluation and mitigation strategy. In March 2017 the FDA approved ocrelizumab, a humanized anti-CD20 monoclonal antibody, as a treatment for RRMS, with requirements for several Phase IV clinical trials.
In RRMS they are modestly effective at decreasing the number of attacks. The interferons and glatiramer acetate are first-line treatments and are roughly equivalent, reducing relapses by approximately 30%. Early-initiated long-term therapy is safe and improves outcomes. Natalizumab reduces the relapse rate more than first-line agents; however, due to issues of adverse effects is a second-line agent reserved for those who do not respond to other treatments or with severe disease. Mitoxantrone, whose use is limited by severe adverse effects, is a third-line option for those who do not respond to other medications. Treatment of clinically isolated syndrome (CIS) with interferons decreases the chance of progressing to clinical MS. Efficacy of interferons and glatiramer acetate in children has been estimated to be roughly equivalent to that of adults. The role of some newer agents such as fingolimod, teriflunomide, and dimethyl fumarate, as of 2011, is not yet entirely clear.
As of 2017, rituximab was widely used off-label to treat RRMS.
As of 2017, rituximab has been widely used off-label to treat progressive primary MS. In March 2017 the FDA approved ocrelizumab, as a treatment for primary progressive MS, the first drug to gain that approval, with requirements for several Phase IV clinical trials.
, only one medication, mitoxantrone, has been approved for secondary progressive MS. In this population tentative evidence supports mitoxantrone moderately slowing the progression of the disease and decreasing rates of relapses over two years.
Management Corticosteroids may be effective in some patients. Additional treatment options are beta-interferon or immunosuppressive therapy. Otherwise management is supportive and includes physiotherapy, occupational therapy and nutritional support in the later stages as patients lose their ability to eat.
Attacks are treated with short courses of high dosage intravenous corticosteroids such as methylprednisolone IV.
Plasmapheresis can be an effective treatment when attacks progress or do not respond to corticosteroid treatment. Clinical trials for these treatments contain very small numbers, and most are uncontrolled, though some report high success percentage.
Treatment typically involves improving the patient's quality of life. This is accomplished through the management of symptoms or slowing the rate of demyelination. Treatment can include medication, lifestyle changes (i.e. quit smoking, adjusting daily schedules to include rest periods and dietary changes), counselling, relaxation, physical exercise, patient education and, in some cases, deep brain thalamic stimulation (in the case of tremors). The progressive phase of MS appears driven by the innate immune system, which will directly contribute to the neurodegenerative changes that occur in progressive MS. Until now, there are no therapies that specifically target innate immune cells in MS. As the role of innate immunity in MS becomes better defined, it may be possible to better treat MS by targeting the innate immune system.
Treatments are patient-specific and depend on the symptoms that present with the disorder, as well as the progression of the condition.
Currently, there is no cure for Devic's disease, but symptoms can be treated. Some patients recover, but many are left with impairment of vision and limbs, which can be severe.
Exercise is a promising mechanism of prevention and treatment for various diseases characterized by neuroinflammation. Aerobic exercise is used widely to reduce inflammation in the periphery. Exercise has been shown to decreases proliferation of microglia in the brain, decrease hippocampal expression of immune-related genes, and reduce expression of inflammatory cytokines such as TNF-α.
There are no effective drugs that inhibit or cure the virus infection without toxicity. Therefore, treatment aims at reversing the immune deficiency to slow or stop the disease progress. In patients on immunosuppression, this means stopping the drugs or using plasma exchange to accelerate the removal of the biologic agent that put the person at risk for PML.
In HIV-infected people, this may mean starting highly active antiretroviral therapy (HAART). AIDS patients starting HAART after being diagnosed with PML tend to have a slightly longer survival time than patients who were already on HAART and then develop PML. Some AIDS patients with PML have been able to survive for several years, with HAART. A rare complication of effective HAART is immune reconstitution inflammatory syndrome (IRIS), in which increased immune system activity actually increases the damage caused by the JCV infection; although IRIS can often be managed with medication, it is extremely dangerous in PML.
Cidofovir was studied as possible treatment for PML and has been used on a case by case basis, working in some, but not others.
Cytarabine (also known as ARA-C), a chemotherapy drug used to treat certain cancers, has been prescribed on an experimental basis for a small number of non-AIDS PML patients and stabilized the neurological condition of a minority of these patients. One patient regained some cognitive function lost as a result of PML.
In June 2010, the first case report appeared of a PML patient being successfully treated with the anti malaria drug mefloquine with activity against the JC virus. The patient cleared the virus and had no further neurological deterioration.
Two case reports of using interleukin-2 successfully have been published. Some success have been reported with mirtazapine, but this has not been demonstrated in clinical trials.
A number of drugs work against JC virus in cell culture, but there is no proven, effective therapy in humans.
For example, 1-O-hexadecyloxypropyl-cidofovir (CMX001), suppresses JCV but has been found to have toxicity at therapeutic dosage. The number of patients treated with other therapies is too low to demonstrate effectiveness.
Early and aggressive treatment is important to prevent irreversible neurological damage, hearing loss, or vision loss. Medications used include immunosuppressive agents and corticosteroids such a prednisone, or intravenous immunoglobulins (IVIG). Other drugs that have been used are mycophenolate mofetil (Cellcept), azathioprine (Imuran), cyclophosphamide, rituximab, and anti-TNF therapies.
Hearing aids or cochlear implants may be necessary in the event of hearing loss.
In the US, neuroborreliosis is typically treated with intravenous antibiotics which cross the blood–brain barrier, such as penicillins, ceftriaxone, or cefotaxime. One relatively small randomized controlled trial suggested ceftriaxone was more effective than penicillin in the treatment of neuroborreliosis. Small observational studies suggest ceftriaxone is also effective in children. The recommended duration of treatment is 14 to 28 days.
Several studies from Europe have suggested oral doxycycline is equally as effective as intravenous ceftriaxone in treating neuroborreliosis. Doxycycline has not been widely studied as a treatment in the US, but antibiotic sensitivities of prevailing European and US isolates of "Borrelia burgdorferi" tend to be identical. However, doxycycline is generally not prescribed to children due to the risk of bone and tooth damage.
Discreditied or doubtful treatments for neuroborreliosis include:
- Malariotherapy
- Hyperbaric oxygen therapy
- Colloidal silver
- Injections of hydrogen peroxide and bismacine
In terms of treatment for neuromuscular diseases (NMD), "exercise" might be a way of managing them, as NMD individuals would gain muscle strength. In a study aimed at results of exercise, in muscular dystrophy and Charcot-Marie-Tooth disease, the later benefited while the former did not show benefit; therefore, it depends on the disease Other management routes for NMD should be based on medicinal and surgical procedures, again depending on the underlying cause.
Because neuroinflammation has been associated with a variety of neurodegenerative diseases, there is increasing interest to determine whether reducing inflammation will reverse neurodegeneration. Inhibiting inflammatory cytokines, such as IL-1β, decreases neuronal loss seen in neurodegenerative diseases. Current treatments for multiple sclerosis include interferon-B, Glatiramer actetate, and Mitoxantrone, which function by reducing or inhibiting T Cell activation, but have the side effect of systemic immunosuppression In Alzheimer's disease, the use of non-steroidal anti-inflammatory drugs decreases the risk of developing the disease. Current treatments for Alzheimer's disease include NSAIDs and glucocorticoids. NSAIDs function by blocking conversion of prostaglandin H2 into other prostaglandins (PGs) and thromboxane (TX). Prostoglandins and thromboxane act as inflammatory mediators and increase microvascular permeability.
Experimentation has shown that manipulating the levels of thyroid hormone can be considered as a strategy to promote remyelination and prevent irreversible damage in Multiple sclerosis patients. N-cadherin agonists have been identified and observed to stimulate neurite growth and cell migration, key aspects of promoting axon growth and remyelination after injury or disease. It has been shown that intranasal administration of aTf (apotransferrin) can protect myelin and induce remyelination.
Much of the research referenced in this section has been conducted in 2012 and represents very new information about demyelinating diseases and potential therapies for them.
In most MS-associated optic neuritis, visual function spontaneously improves over 2–3 months, and there is evidence that corticosteroid treatment does not affect the long term outcome. However, for optic neuritis that is not MS-associated (or atypical optic neuritis) the evidence is less clear and therefore the threshold for treatment with intravenous corticosteroids is lower. Intravenous corticosteroids also reduce the risk of developing MS in the following two years in patients with MRI lesions; but this effect disappears by the third year of follow up.
Paradoxically, oral administration of corticosteroids in this situation may lead to more recurrent attacks than in non-treated patients (though oral steroids are generally prescribed after the intravenous course, to wean the patient off the medication). This effect of corticosteroids seems to be limited to optic neuritis and has not been observed in other diseases treated with corticosteroids.
A Cochrane Systematic Review studied the effect of corticosteroids for treating people with acute optic neuritis. Specific corticosteroids studied included intravenous and oral methylprednisone, and oral prednisone. The authors conclude that current evidence does not show a benefit of either intravenous or oral corticosteroids for rate of recovery of vision (in terms of visual acuity, contrast sensitivity, or visual fields)..
Since pseudobulbar palsy is a syndrome associated with other diseases, treating the underlying disease may eventually reduce the symptoms of pseudobulbar palsy.
Possible pharmacological interventions for pseudobulbar affect include the tricyclic antidepressants, serotonin reuptake inhibitors, and a novel approach utilizing dextromethorphan and quinidine sulfate. Nuedexta is an FDA approved medication for pseudobulbar affect. Dextromethorphan, an N-methyl-D-aspartate receptor antagonist, inhibits glutamatergic transmission in the regions of the brainstem and cerebellum, which are hypothesized to be involved in pseudobulbar symptoms, and acts as a sigma ligand, binding to the sigma-1 receptors that mediate the emotional motor expression.
No controlled clinical trials have been conducted on ADEM treatment, but aggressive treatment aimed at rapidly reducing inflammation of the CNS is standard. The widely accepted first-line treatment is high doses of intravenous corticosteroids, such as methylprednisolone or dexamethasone, followed by 3–6 weeks of gradually lower oral doses of prednisolone. Patients treated with methylprednisolone have shown better outcomes than those treated with dexamethasone. Oral tapers of less than three weeks duration show a higher chance of relapsing, and tend to show poorer outcomes. Other anti-inflammatory and immunosuppressive therapies have been reported to show beneficial effect, such as plasmapheresis, high doses of intravenous immunoglobulin (IVIg), mitoxantrone and cyclophosphamide. These are considered alternative therapies, used when corticosteroids cannot be used or fail to show an effect.
There is some evidence to suggest that patients may respond to a combination of methylprednisolone and immunoglobulins if they fail to respond to either separately
In a study of 16 children with ADEM, 10 recovered completely after high-dose methylprednisolone, one severe case that failed to respond to steroids recovered completely after IV Ig; the five most severe cases -with ADAM and severe peripheral neuropathy- were treated with combined high-dose methylprednisolone and immunoglobulin, two remained paraplegic, one had motor and cognitive handicaps, and two recovered. A recent review of IVIg treatment of ADEM (of which the previous study formed the bulk of the cases) found that 70% of children showed complete recovery after treatment with IVIg, or IVIg plus corticosteroids. A study of IVIg treatment in adults with ADEM showed that IVIg seems more effective in treating sensory and motor disturbances, while steroids seem more effective in treating impairments of cognition, consciousness and rigor. This same study found one subject, a 71-year-old man who had not responded to steroids, that responded to an IVIg treatment 58 days after disease onset.
The prognosis of this disease is very variable and can take three different courses: a monophasic, not remitting;
remitting;
and finally, progressive, with increase in deficits.
AON is a rare disease and the natural history of the disease process is not well defined. Unlike typical optic neuritis, there is no association with multiple sclerosis, but the visual prognosis for AON is worse than typical optic neuritis. Thus AON patients have different treatment, and often receive chronic immunosuppression. No formal recommendation can be made regarding the best therapeutic approach. However, the available evidence to date supports treatment with corticosteroids and other immunosuppressive agents.
Early diagnosis and prompt treatment with systemic corticosteroids may restore some visual function but the patient may remain steroid dependent; vision often worsens when corticosteroids are tapered. As such, long-term steroid-sparing immunosuppressive agents may be required to limit the side-effects of steroids and minimize the risk of worsening vision.
Treatment and prognosis depend on the underlying condition. For example, in thiamine deficiency, treatment would be the immediate administration of vitamin B1.
Natalizumab (Tysabri) was approved in 2004 by the FDA for multiple sclerosis (MS). It was subsequently withdrawn from the market by its manufacturer after it was linked with three cases of PML. All 3 initial cases were taking natalizumab in combination with interferon beta-1a. After a safety review the drug was returned to the market in 2006 as a monotherapy for MS under a special prescription program. As of May 2011, over 130 cases of PML had been reported in MS patients, all in patients who had taken natalizumab for more than a year. While none of them had taken the drug in combination with other disease-modifying treatments, previous use of MS treatments increases the risk of PML between 3 and 4-fold. The estimated prevalence of PML in MS is 1.5 cases per thousand natalizumab users. Around 20% of MS patients with PML die, and most of the rest are very disabled.
A person with MS developed PML and died during a 4-year course of dimethyl-fumarate.
"For many years, it was thought that postural and balance disorders in cerebellar ataxia were not treatable. However, the results of several recent studies suggest that rehabilitation can relieve postural disorders in patients with cerebellar ataxia...There is now moderate level evidence that rehabilitation is efficient to improve postural capacities of patients with cerebellar ataxia – particularly in patients with degenerative ataxia or multiple sclerosis. Intensive rehabilitation programs with balance and coordination exercises are necessary. Although techniques such as virtual reality, biofeedback, treadmill exercises with supported bodyweight and torso weighting appear to be of value, their specific efficacy has to be further investigated. Drugs have only been studied in degenerative ataxia, and the level of evidence is low."
One approach is that it can be ameliorated to varying degrees by means of Frenkel exercises.
One main objective of the treatment is to re-establish the physiological inhibition exerted by the cerebellar cortex over cerebellar nuclei. Research using Transcranial direct-current stimulation (TCDCS) and Transcranial magnetic stimulation (TMS) shows promising results.
Additionally, mild to moderate cerebellar ataxia may be treatable with buspirone.
It is thought that the buspirone increases the serotonin levels in the cerebellum and so decreases ataxia.
Balo concentric sclerosis is a disease in which the white matter of the brain appears damaged in concentric layers, leaving the axis cylinder intact. It was described by Joszef Balo who initially named it "leuko-encephalitis periaxialis concentrica" from the previous definition, and it is currently considered one of the borderline forms of multiple sclerosis.
Balo concentric sclerosis is a demyelinating disease similar to standard multiple sclerosis, but with the particularity that the demyelinated tissues form concentric layers. Scientists used to believe that the prognosis was similar to Marburg multiple sclerosis, but now they know that patients can survive, or even have spontaneous remission and asymptomatic cases.
It is also common that the clinical course is primary progressive, but a relapsing-remitting course has been reported.
It seems that the course gets better with prednisone therapy, although evidence of this is anecdotal and such conclusions are difficult to accept given that there are cases where patients spontaneously recover whether the patient was on steroid therapy or not.
Inflammatory demyelinating diseases (IDDs), sometimes called Idiopathic (IIDDs) because the unknown etiology of some of them, and sometimes known as borderline forms of multiple sclerosis, is a collection of multiple sclerosis variants, sometimes considered different diseases, but considered by others to form a spectrum differing only in terms of chronicity, severity, and clinical course.
Multiple Sclerosis for some people is a syndrome more than a single disease. It can be considered among the acquired demyelinating syndromes with a multiphasic instead of monophasic behaviour. Multiple sclerosis also has a prodromal stage in which an unknown underlying condition, able to damage the brain, is present, but no lesion has still developed.