Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
After infection, steroids, such as prednisone may be used to relieve muscle pain associated with larval migration.
Early administration of anthelmintics, such as mebendazole or albendazole, decreases the likelihood of larval encystation, particularly if given within three days of infection. However, most cases are diagnosed after this time.
In humans, Mebendazole (200–400 mg three times a day for three days) or albendazole (400 mg twice a day for 8–14 days) are given to treat trichinosis. These drugs prevent newly hatched larvae from developing, but should not be given to pregnant women or children under two years of age.
Anti-helminthics are often used to kill off the worms, however in some cases this may cause patients to worsen due to toxins released by the dying worms. Albendazole, ivermectin, mebendazole, and pyrantel are all commonly used, though albendazole is usually the drug of choice. Studies have shown that anti-helminthic drugs may shorten the course of the disease and relieve symptoms. Therefore anti-helminthics are generally recommended, but should be administered gradually so as to limit the inflammatory reaction.
Anti-helminthics should generally be paired with corticosteroids in severe infections to limit the inflammatory reaction to the dying parasites. Studies suggest that a two-week regimen of a combination of mebendazole and prednisolone significantly shortened the course of the disease and length of associated headaches without observed harmful side effects. Other studies suggest that albendazole may be more favorable, because it may be less like to incite an inflammatory reaction. The Chinese herbal medicine long-dan-xie-gan-tan (LDGXT) has also been shown to have a similar anti inflammatory effect, and in mild cases may be used alone to relieve symptoms while infection resolves itself.
Broad-spectrum benzimidazoles (such as albendazole and mebendazole) are the first line treatment of intestinal roundworm and tapeworm infections. Macrocyclic lactones (such as ivermectin) are effective against adult and migrating larval stages of nematodes. Praziquantel is the drug of choice for schistosomiasis, taeniasis, and most types of food-borne trematodiases. Oxamniquine is also widely used in mass deworming programmes. Pyrantel is commonly used for veterinary nematodiasis. Artemisinins and derivatives are proving to be candidates as drugs of choice for trematodiasis.
The most common treatment for hookworm are benzimidazoles, specifically albendazole and mebendazole. BZAs kill adult worms by binding to the nematode’s β-tubulin and subsequently inhibiting microtubule polymerization within the parasite. In certain circumstances, levamisole and pyrantel pamoate may be used. A 2008 review found that the efficacy of single-dose treatments for hookworm infections were as follows: 72% for albendazole, 15% for mebendazole, and 31% for pyrantel pamoate. This substantiates prior claims that albendazole is much more effective than mebendazole for hookworm infections. Also of note is that the World Health Organization does recommend anthelmintic treatment in pregnant women after the first trimester. It is also recommended that if the patient also suffers from anemia that ferrous sulfate (200 mg) be administered three times daily at the same time as anthelmintic treatment; this should be continued until hemoglobin values return to normal which could take up to 3 months.
Hookworm infection can be treated with local cryotherapy when the hookworm is still in the skin.
Albendazole is effective both in the intestinal stage and during the stage the parasite is still migrating under the skin.
In case of anemia, iron supplementation can cause relief symptoms of iron deficiency anemia. However, as red blood cell levels are restored, shortage of other essentials such as folic acid or vitamin B12 may develop, so these might also be supplemented.
Other important issues related to the treatment of hookworm are reinfection and drug resistance. It has been shown that reinfection after treatment can be extremely high. Some studies even show that 80% of pretreatment hookworm infection rates can be seen in treated communities within 30–36 months. While reinfection may occur, it is still recommended that regular treatments be conducted as it will minimize the occurrence of chronic outcomes. There are also increasing concerns about the issue of drug resistance. Drug resistance has appeared in front-line anthelmintics used for livestock nematodes. Generally human nematodes are less likely to develop resistance due to longer reproducing times, less frequent treatment, and more targeted treatment. Nonetheless, the global community must be careful to maintain the effectiveness of current anthelmintic as no new anthelmintic drugs are in the late-stage development.
If complications of helminthiasis, such as intestinal obstruction occur, emergency surgery may be required. Patients who require non-emergency surgery, for instance for removal of worms from the biliary tree, can be pre-treated with the anthelmintic drug albendazole.
The preventative measure of keeping cats inside in areas with high infection rates can prevent infection. Approved tick treatments for cats can be used but have been shown not to fully prevent tick bites.
The most often used treatments for cytauxzoonosis are imidocarb dipropionate and a combination of atovaquone and azithromycin. Although imidocarb has been used for years, it is not particularly effective. In a large study, only 25% of cats treated with this drug and supportive care survived. 60% of sick cats treated with supportive care and the combination of the anti-malarial drug atovaquone and the antibiotic azithromycin survived infection.
Quick referral to a veterinarian equipped to treat the disease may be beneficial. All infected cats require supportive care, including careful fluids, nutritional support, treatment for complications, and often blood transfusion.
Cats that survive the infection should be kept indoors as they can be persistent carriers after surviving infection and might indirectly infect other cats after being themselves bitten by a vector tick.
The medications prescribed for acute toxoplasmosis are the following:
- Pyrimethamine — an antimalarial medication
- Sulfadiazine — an antibiotic used in combination with pyrimethamine to treat toxoplasmosis
- Combination therapy is usually given with folic acid supplements to reduce incidence of thrombocytopaenia.
- Combination therapy is most useful in the setting of HIV.
- Clindamycin
- Spiramycin — an antibiotic used most often for pregnant women to prevent the infection of their children.
(other antibiotics, such as minocycline, have seen some use as a salvage therapy).
If infected during pregnancy, spiramycin is recommended in the first and early second trimesters while pyrimethamine/sulfadiazine and leucovorin is recommended in the late second and third trimesters.
In people with latent toxoplasmosis, the cysts are immune to these treatments, as the antibiotics do not reach the bradyzoites in sufficient concentration.
The medications prescribed for latent toxoplasmosis are:
- Atovaquone — an antibiotic that has been used to kill "Toxoplasma" cysts inside AIDS patients
- Clindamycin — an antibiotic that, in combination with atovaquone, seemed to optimally kill cysts in mice
There is a lack of scientific study to support the efficacy of any particular treatment. An additional review published in 2009 made a similar conclusion, noting that because the diagnostics in use have been unreliable, it has been impossible to determine whether a drug has eradicated the infection, or just made the patient feel better. Historical reports, such as one from 1916, note difficulty associated with eradication of "Blastocystis" from patients, describing it as "an infection that is hard to get rid of."
A 1999 "in vitro" study from Pakistan found 40% of isolates are resistant to common antiprotozoal drugs. A study of isolates from patients diagnosed with IBS found 40% of isolates resistant to metronidazole and 32% resistant to furazolidone. Drugs reported in studies to be effective in eradicating "Blastocystis" infection have included metronidazole, trimethoprim, TMP-SMX (only trimethoprim is active with sulphamethoxazole demonstrating no activity), tetracycline, doxycycline, nitazoxanide, pentamidine, paromomycin and iodoquinol. Iodoquinol has been found to be less effective in practice than in-vitro. Miconazole and quinacrine have been reported as effective agents against "Blastocystis" growth in-vitro. Rifaximin, and albendazole have shown promise as has ivermectin which demonstrated high effectiveness against blastocystis hominis isolates in an in vitro study. There is also evidence that the probiotic yeast "Saccharomyces boulardii", and the plant mallotus oppositifolius may be effective against "Blastocystis" infections.
Physicians have described the successful use of a variety of discontinued antiprotozoals in treatment of "Blastocystis" infection. Emetine was reported as successful in cases in early 20th century with British soldiers who contracted "Blastocystis" infection while serving in Egypt. "In vitro" testing showed emetine was more effective than metronidazole or furazolidone. Emetine is available in the United States through special arrangement with the Center for Disease Control. Clioquinol (Entero-vioform) was noted as successful in treatment of "Blastocystis" infection but removed from the market following an adverse event in Japan. Stovarsol and Narsenol, two arsenic-based antiprotozoals, were reported to be effective against the infection. Carbarsone was available as an anti-infective compound in the United States as late as 1991, and was suggested as a possible treatment. The reduction in the availability of antiprotozoal drugs has been noted as a complicating factor in treatment of other protozoal infections. For example, in Australia, production of diloxanide furoate ended in 2003, paromomycin is available under special access provisions, and the availability of iodoquinol is limited.
Concomitant pinworm infection should also be excluded, although the association has not been proven. Successful treatment of the infection with iodoquinol, doxycycline, metronidazole, paromomycin, and secnidazole has been reported. Resistance requires the use of combination therapy to eradicate the organism. All persons living in the same residence should be screened for "D. fragilis", as asymptomatic carriers may provide a source of repeated infection. Paromomycin is an effective prophylactic for travellers who will encounter poor sanitation and unsafe drinking water.
One strategy for the prevention of infection transmission between cats and people is to better educate people on the behaviour that puts them at risk for becoming infected.
Those at the highest risk of contracting a disease from a cat are those with behaviors that include: being licked, sharing food, sharing kithchen utensils, kissing, and sleeping with a cat. The very young, the elderly and those who are immunocompromised increase their risk of becoming infected when sleeping with their cats (and dogs). The CDC recommends that cat owners not allow a cat to lick your face because it can result in disease transmission. If someone is licked on their face, mucous membranes or an open wound, the risk for infection is reduced if the area is immediately washed with soap and water. Maintaining the health of the animal by regular inspection for fleas and ticks, scheduling deworming medications along with veterinary exams will also reduce the risk of acquiring a feline zoonosis.
Recommendations for the prevention of ringworm transmission to people include:
- regularly vacuuming areas of the home that pets commonly visit helps to remove fur or flakes of skin
- washing the hands with soap and running water after playing with or petting your pet.
- wearing gloves and long sleeves when handling cats infected with.
- disinfect areas the pet has spent time in, including surfaces and bedding.
- the spores of this fungus can be killed with common disinfectants like chlorine bleach diluted 1:10 (1/4 cup in 1 gallon of water), benzalkonium chloride, or strong detergents.
- not handling cats with ringworm by those whose immune system is weak in any way (if you have HIV/AIDS, are undergoing cancer treatment, or are taking medications that suppress the immune system, for example).
- taking the cat to the veterinarian if ringworm infection is suspected.
Treatment of infections caused by "Bartonella" species include:
Some authorities recommend the use of azithromycin.
Although no specific treatment for acute infection with SuHV1 is available, vaccination can alleviate clinical signs in pigs of certain ages. Typically, mass vaccination of all pigs on the farm with a modified live virus vaccine is recommended. Intranasal vaccination of sows and neonatal piglets one to seven days old, followed by intramuscular (IM) vaccination of all other swine on the premises, helps reduce viral shedding and improve survival. The modified live virus replicates at the site of injection and in regional lymph nodes. Vaccine virus is shed in such low levels, mucous transmission to other animals is minimal. In gene-deleted vaccines, the thymidine kinase gene has also been deleted; thus, the virus cannot infect and replicate in neurons. Breeding herds are recommended to be vaccinated quarterly, and finisher pigs should be vaccinated after levels of maternal antibody decrease. Regular vaccination results in excellent control of the disease. Concurrent antibiotic therapy via feed and IM injection is recommended for controlling secondary bacterial pathogens.
Dientamoebiasis is a medical condition caused by infection with "Dientamoeba fragilis", a single-cell parasite that infects the lower gastrointestinal tract of humans. It is an important cause of traveler's diarrhea, chronic abdominal pain, chronic fatigue, and failure to thrive in children.
SuHV1 can be used to analyze neural circuits in the central nervous system (CNS). For this purpose the attenuated (less virulent) Bartha SuHV1 strain is commonly used and is employed as a retrograde and anterograde transneuronal tracer. In the retrograde direction, SuHV1-Bartha is transported to a neuronal cell body via its axon, where it is replicated and dispersed throughout the cytoplasm and the dendritic tree. SuHV1-Bartha released at the synapse is able to cross the synapse to infect the axon terminals of synaptically connected neurons, thereby propagating the virus; however, the extent to which non-synaptic transneuronal transport may also occur is uncertain. Using temporal studies and/or genetically engineered strains of SuHV1-Bartha, second, third, and higher order neurons may be identified in the neural network of interest.
Some vertically transmitted infections, such as toxoplasmosis and syphilis, can be effectively treated with antibiotics if the mother is diagnosed early in her pregnancy. Many viral vertically transmitted infections have no effective treatment, but some, notably rubella and varicella-zoster, can be prevented by vaccinating the mother prior to pregnancy.
If the mother has active herpes simplex (as may be suggested by a pap test), delivery by Caesarean section can prevent the newborn from contact, and consequent infection, with this virus.
IgG antibody may play crucial role in prevention of intrauterine infections and extensive research is going on for developing IgG-based therapies for treatment and vaccination.
Cryptosporidiosis is a parasitic disease that is transmitted through contaminated food or water from an infected person or animal. Cryptosporidiosis in cats is rare, but they can carry the protozoan without showing any signs of illness. Cryptosporidiosis can cause profuse, watery diarrhea with cramping, abdominal pain, and nausea in people. Illness in people is usually self-limiting and lasts only 2–4 days, but can become severe in people with weakened immune systems. Cryptosporidiosis (Cryptosporidium spp.) Cats transmit the protozoan through their feces. The symptoms in people weight loss and chronic diarrhea in high-risk patients. More than one species of this genus can be acquired by people. Dogs can also transmit this parasite.
Cytauxzoon felis is a protozoal organism transmitted to domestic cats by tick bites, and whose natural reservoir host is the bobcat. "C. felis" has been found in other wild felid species such as Florida bobcat, eastern bobcat, Texas cougar, and a white tiger in captivity. "C. felis" infection is limited to the family felidae which means that "C. felis" poses no zoonotic (transmission to humans) risk or agricultural (transmission to farm animals) risk. Until recently it was believed that after infection with "C. felis", pet cats almost always died. As awareness of "C. felis" has increased it has been found that treatment is not always futile. More cats have been shown to survive the infection than was previously thought. New treatments offer as much as 60% survival rate.
Blastocystosis refers to a medical condition caused by infection with "Blastocystis". "Blastocystis" is a protozoal, single-celled parasite that inhabits the gastrointestinal tracts of humans and other animals. Many different types of "Blastocystis" exist, and they can infect humans, farm animals, birds, rodents, amphibians, reptiles, fish, and even cockroaches. Blastocystosis has been found to be a possible risk factor for development of IBS (Irritable Bowel Syndrome).
Each type of vertically transmitted infection has a different prognosis. The stage of the pregnancy at the time of infection also can change the effect on the newborn.
Neonatal infection treatment is typically started before the diagnosis of the cause can be confirmed.
Neonatal infection can be prophylactically treated with antibiotics. Maternal treatment with antibiotics is primarily used to protect against group B streptococcus.
Women with a history of HSV, can be treated with antiviral drugs to prevent symptomatic lesions and viral shedding that could infect the infant at birth. The antiviral medications used include acyclovir, penciclovir, valacyclovir, and famciclovir. Only very small amounts of the drug can be detected in the fetus. There are no increases in drug-related abnormalities in the infant that could be attributed to acyclovir. Long-term effects of antiviral medications have not been evaluated for their effects after growth and development of the child occurs. Neutropenia can be a complication of acyclovir treatment of neonatal HSV infection, but is usually transient. Treatment with immunoglobulin therapy has not been proven to be effective.
Treatment depends on the type of opportunistic infection, but usually involves different antibiotics.