Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
Supportive care is the mainstay of therapy in TRALI. Oxygen supplementation is employed in all reported cases of TRALI and aggressive respiratory support is needed in 72 percent of patients. Intravenous administration of fluids, as well as vasopressors, are essential for blood pressure support. Use of diuretics, which are indicated in the management of transfusion associated circulatory overload (TACO), should be avoided in TRALI. Corticosteroids can be beneficial.
Transfusion associated circulatory overload is prevented by avoiding unnecessary transfusions, closely monitoring patients receiving transfusions, transfusing smaller volumes of blood at a slower rate, and considering the use of diuretics. A pre-transfusion TACO checklist can be used to assess patients' risk of developing TACO.
The initial management of pulmonary edema, irrespective of the type or cause, is supporting vital functions. Therefore, if the level of consciousness is decreased it may be required to proceed to tracheal intubation and mechanical ventilation to prevent airway compromise. Hypoxia (abnormally low oxygen levels) may require supplementary oxygen, but if this is insufficient then again mechanical ventilation may be required to prevent complications. Treatment of the underlying cause is the next priority; pulmonary edema secondary to infection, for instance, would require the administration of appropriate antibiotics.
In those with underlying heart disease, effective control of congestive symptoms prevents pulmonary edema.
Dexamethasone is in widespread use for the prevention of high altitude pulmonary edema. Sildenafil is used as a preventive treatment for altitude-induced pulmonary edema and pulmonary hypertension, the mechanism of action is via phosphodiesterase inhibition which raises cGMP, resulting in pulmonary arterial vasodilation and inhibition of smooth muscle cell proliferation. While this effect has only recently been discovered, sildenafil is already becoming an accepted treatment for this condition, in particular in situations where the standard treatment of rapid descent has been delayed for some reason.
The second stage features the reabsorption of the initially extravasated fluid and albumin from the tissues, and it usually lasts 1 to 2 days. Intravascular fluid overload leads to polyuria and can cause flash pulmonary edema and cardiac arrest, with possibly fatal consequences. Death from SCLS typically occurs during this recruitment phase because of pulmonary edema arising from excessive intravenous fluid administration during the earlier leak phase. The severity of the problem depends on to the quantity of fluid supplied in the initial phase, the damage that may have been sustained by the kidneys, and the promptness with which diuretics are administered to help the patient discharge the accumulated fluids quickly. A recent study of 59 acute episodes occurring in 37 hospitalized SCLS patients concluded that high-volume fluid therapy was independently associated with poorer clinical outcomes, and that the main complications of SCLS episodes were recovery-phase pulmonary edema (24%), cardiac arrhythmia (24%), compartment syndrome (20%), and acquired infections (19%).
The prevention of episodes of SCLS has involved two approaches. The first has long been identified with the Mayo Clinic, and it recommended treatment with beta agonists such as terbutaline, phosphodiesterase-inhibitor theophylline, and leukotriene-receptor antagonists montelukast sodium.
The rationale for use of these drugs was their ability to increase intracellular cyclic AMP (adenosine monophosphate) levels, which might counteract inflammatory signaling pathways that induce endothelial permeability. It was the standard of care until the early 2000s, but was sidelined afterwards because patients frequently experienced renewed episodes of SCLS, and because these drugs were poorly tolerated due to their unpleasant side effects.
The second, more recent approach pioneered in France during the last decade (early 2000s) involves monthly intravenous infusions of immunoglobulins (IVIG), with an initial dose of 2 gr/kg/month of body weight, which has proven very successful as per abundant case-report evidence from around the world.
IVIG has long been used for the treatment of autoimmune and MGUS-associated syndromes, because of its potential immunomodulatory and anticytokine properties. The precise mechanism of action of IVIG in patients with SCLS is unknown, but it is likely that it neutralizes their proinflammatory cytokines that provoke endothelial dysfunction. A recent review of clinical experience with 69 mostly European SCLS patients found that preventive treatment with IVIG was the strongest factor associated with their survival, such that an IVIG therapy should be the first-line preventive agent for SCLS patients. According to a recent NIH survey of patient experience, IVIG prophylaxis is associated with a dramatic reduction in the occurrence of SCLS episodes in most patients, with minimal side effects, such that it may be considered as frontline therapy for those with a clear-cut diagnosis of SCLS and a history of recurrent episodes.
TACO and TRALI are both respiratory complications following a transfusion. TACO and transfusion related acute lung injury (TRALI) are often difficult to distinguish in the acute situation. TACO is usually associated with hypertension and responds well to diuretics, TRALI is often associated with hypotension and diuretics have a minimal effect.
Nitrates such as nitroglycerin are often used as part of the initial therapy for ADHF.
Another option is nesiritide, although it should only be considered if conventional therapy has been ineffective or contraindicated as it is much more expensive than nitroglycerine and has not been shown to be of any greater benefit.
In acute decompensated heart failure, the immediate goal is to re-establish adequate perfusion and oxygen delivery to end organs. This entails ensuring that airway, breathing, and circulation are adequate. Management consists of propping up the head of the patient, giving oxygen to correct hypoxemia, administering morphine, diuretics like furosemide, addition of an ACE inhibitor, use of nitrates and use of digoxin if indicated for the heart failure and if arrhythmic.
Hydroxyurea is a medication that can help to prevent acute chest syndrome. It may cause a low white blood cell count, which can predispose the person to some types of infection.
Vasopressors may be used if blood pressure does not improve with fluids. There is no evidence of substantial superiority of one vasopressor over another; however, using dopamine leads to an increased risk of arrythmia when compared with norepinephrine. Vasopressors have not been found to improve outcomes when used for hemorrhagic shock from trauma but may be of use in neurogenic shock. Activated protein C (Xigris) while once aggressively promoted for the management of septic shock has been found not to improve survival and is associated with a number of complications. Xigris was withdrawn from the market in 2011, and clinical trials were discontinued. The use of sodium bicarbonate is controversial as it has not been shown to improve outcomes. If used at all it should only be considered if the pH is less than 7.0.
In mostly European experience with 69 patients during 1996-2016, the 5- and 10-year survival rates for SCLS patients were 78% and 69%, respectively, but the survivors received significantly more frequent preventive treatment with IVIG than did non-survivors. Five- and 10-year survival rates in patients treated with IVIG were 91% and 77%, respectively, compared to 47% and 37% in patients not treated with IVIG. Moreover, better identification and management of this condition appears to be resulting in lower mortality and improving survival and quality-of-life results as of late.
Aggressive intravenous fluids are recommended in most types of shock (e.g. 1–2 liter normal saline bolus over 10 minutes or 20 ml/kg in a child) which is usually instituted as the person is being further evaluated. Which intravenous fluid is superior, colloids or crystalloids, remains undetermined. Thus as crystalloids are less expensive they are recommended. If the person remains in shock after initial resuscitation packed red blood cells should be administered to keep the hemoglobin greater than 100 g/l.
For those with haemorrhagic shock the current evidence supports limiting the use of fluids for penetrating thorax and abdominal injuries allowing mild hypotension to persist (known as permissive hypotension). Targets include a mean arterial pressure of 60 mmHg, a systolic blood pressure of 70–90 mmHg, or until their adequate mentation and peripheral pulses.
Broad spectrum antibiotics to cover common infections such as "Streptococcus pneumoniae" and mycoplasma, pain control, and blood transfusion. Acute chest syndrome is an indication for exchange transfusion.
Bronchodilators may be useful but have not been well studied.
Due to the high mortality of untreated TTP, a presumptive diagnosis of TTP is made even when only microangiopathic hemolytic anemia and thrombocytopenia are seen, and therapy is started. Transfusion is contraindicated in thrombotic TTP, as it fuels the coagulopathy. Since the early 1990s, plasmapheresis has become the treatment of choice for TTP. This is an exchange transfusion involving removal of the patient's blood plasma through apheresis and replacement with donor plasma (fresh frozen plasma or cryosupernatant); the procedure must be repeated daily to eliminate the inhibitor and abate the symptoms. If apheresis is not available, fresh frozen plasma can be infused, but the volume that can be given safely is limited due to the danger of fluid overload. Plasma infusion alone is not as beneficial as plasma exchange. Corticosteroids (prednisone or prednisolone) are usually given. Rituximab, a monoclonal antibody aimed at the CD20 molecule on B lymphocytes, may be used on diagnosis; this is thought to kill the B cells and thereby reduce the production of the inhibitor. A stronger recommendation for rituximab exists where TTP does not respond to corticosteroids and plasmapheresis.
Caplacizumab is an alternative option in treating TTP as it has been shown that it induces a faster disease resolution compared with those patient who were on placebo. However, the use of caplacizumab was associated with increase bleeding tendencies in the studied subjects.
Most patients with refractory or relapsing TTP receive additional immunosuppressive therapy, e.g. vincristine, cyclophosphamide, splenectomy or a combination of the above.
Children with Upshaw-Schülman syndrome receive prophylactic plasma every two to three weeks; this maintains adequate levels of functioning ADAMTS13. Some tolerate longer intervals between plasma infusions. Additional plasma infusions may necessary for triggering events, such as surgery; alternatively, the platelet count may be monitored closely around these events with plasma being administered if the count drops.
Measurements of blood levels of lactate dehydrogenase, platelets, and schistocytes are used to monitor disease progression or remission. ADAMTS13 activity and inhibitor levels may be measured during follow-up, but in those without symptoms the use of rituximab is not recommended.
Treatment is by phlebotomy, erythrocytapheresis or chelation therapy with iron chelating agents such as deferoxamine, deferiprone or deferasirox.
If iron overload has caused end-organ damage, this is generally irreversible and may require transplantation.
Chloramphenicol therapy should be stopped immediately. Exchange transfusion may be required to remove the drug. Sometimes, phenobarbital (UGT induction) is used.
Early stage sepsis-associated purpura fulminans may be reversible with quick therapeutic intervention. Treatment is mainly removing the underlying cause and degree of clotting abnormalities and with supportive treatment (antibiotics, volume expansion, tissue oxygenation, etc.). Thus, treatment includes aggressive management of the septic state.
Purpura fulminans with disseminated intravascular coagulation should be urgently treated with fresh frozen plasma (10–20 mL/kg every 8–12 hours) and/or protein C concentrate to replace pro-coagulant and anticoagulant plasma proteins that have been depleted by the disseminated intravascular coagulation process.
Protein C in plasma in the steady state has a half life of 6- to 10-hour, therefore, patients with severe protein C deficiency and presenting with purpura fulminans can be treated acutely with an initial bolus of protein C concentrate 100 IU/kg followed by 50 IU /kg every 6 hours. A total of 1 IU/kg of protein C concentrate or 1 mL/kg of fresh frozen plasma will increase the plasma concentration of protein C by 1 IU/dL. Cases with comorbid pathological bleeding may require additional transfusions with platelet concentrate (10–15 mL/kg) or cryoprecipitate (5 mL/kg).
Established soft tissue necrosis may require surgical removal of the dead tissue, fasciotomy, amputation or reconstructive surgery.
The condition can be prevented by using chloramphenicol at the recommended doses and monitoring blood levels, or alternatively, third generation cephalosporins can be effectively substituted for the drug, without the associated toxicity.
For people who have severe congenital protein C deficiency, protein C replacement therapies are available, which is indicated and approved for use in the United States and Europe for the prevention of purpura fulminans. Protein C replacement is often in combination with anticoagulation therapy of injectable low molecular weight heparin or oral warfarin. Before initiating warfarin therapy, a few days of therapeutic heparin may be administered to prevent warfarin skin necrosis and other progressive or recurrent thrombotic complications.
Most people with sickle-cell disease have intensely painful episodes called vaso-occlusive crises. However, the frequency, severity, and duration of these crises vary tremendously. Painful crises are treated symptomatically with pain medications; pain management requires opioid administration at regular intervals until the crisis has settled. For milder crises, a subgroup of patients manage on NSAIDs (such as diclofenac or naproxen). For more severe crises, most patients require inpatient management for intravenous opioids; patient-controlled analgesia (PCA) devices are commonly used in this setting. Diphenhydramine is also an effective agent that doctors frequently prescribe to help control itching associated with the use of opioids.
Management is similar to vaso-occlusive crisis, with the addition of antibiotics (usually a quinolone or macrolide, since cell wall-deficient ["atypical"] bacteria are thought to contribute to the syndrome), oxygen supplementation for hypoxia, and close observation. Should the pulmonary infiltrate worsen or the oxygen requirements increase, simple blood transfusion or exchange transfusion is indicated. The latter involves the exchange of a significant portion of the person's red cell mass for normal red cells, which decreases the percent of haemoglobin S in the patient's blood. The patient with suspected acute chest syndrome should be admitted to the hospital with worsening A-a gradient an indication for ICU admission.
Recombinant EPO (r-EPO) may be given to premature infants to stimulate red blood cell production. Brown and Keith (1999) studied two groups of 40 very low birth weight (VLBW) infants to compare the erythropoietic response between two and five times a week dosages of recombinant human erythropoietin (r-EPO) using the same dose. They established that more frequent dosing of the same weekly amount of r-EPO generated a significant and continuous increase in Hb in VLBW infants. The infants that received five dosages had 219,857 mm³ while infants that received two dosages only had 173,361 mm³. However, the response to r-EPO typically takes up to two weeks and the higher dosages lead to higher Hb. Brown and Keith (1999) study also showed responses between two dosage schedules (two times a week and five times a week). Infants were recruited for gestational age—age since conception—≤27 weeks and 28 to 30 weeks and then randomized into the two groups, each totaling 500 U/kg a week. Brown and Keith found that after two weeks of r-EPO administration, Hb counts had increased and leveled off; the infants who received r-EPO five times a week had significantly higher Hb counts. This was present at four weeks for all infants ≤30 weeks gestation and at 8 weeks for infants ≤27 weeks gestation.
To date, studies of r-EPO use in premature infants have had mixed results. Ohls et al. examined the use of early r-EPO plus iron and found no short-term benefits in two groups of infants (172 infants less than 1000 g and 118 infants 1000–1250 g). All r-EPO treated infants received 400 U/g three times a week until they reached 35 weeks gestational age. The use of r-EPO did not decrease the average number of transfusions in the infants born at less than 1000 g, or the percentage of infants in the 1000 to 1250 group. A multi-center European trial studied early versus late r-EPO in 219 infants with birth weights between 500 and 999 g. An r-EPO close of 750 U/kg/week was given to infants in both the early (1–9 weeks) and late (4–10 weeks) groups. The two r-EPO groups were compared to a control group who did not receive r-EPO. Infants in all three groups received 3 to 9 mg/kg of enteral iron. These investigators reported a slight decrease in transfusion and donor exposures in the early r-EPO group (1–9 weeks): 13% early, 11% late and 4% control group. It is likely that only a carefully selected subpopulation of infants may benefit from its use. Contrary to what just said, Bain and Blackburn (2004) also state in another study the use of r-EPO does not appear to have a significant effect on reducing the numbers of early transfusions in most infants, but may be useful to reduce numbers of late transfusion in extremely low-birth-weight infants. A British task force to establish transfusion guidelines for neonates and young children and to help try to explain this confusion recently concluded that “the optimal dose, timing, and nutritional support required during EPO treatment has yet to be defined and currently the routine use of EPO in this patient population is not recommended as similar reduction in blood use can probably be achieved with appropriate transfusion protocols.”
Iron overload is an unavoidable consequence of chronic transfusion therapy, necessary for patients with beta thalassemia. Iron chelation is a medical therapy that avoids the complications of iron overload. The iron overload can be removed by Deferasirox, an oral iron chelator, which has a dose- dependent effect on iron burden. Every unit of transfused blood contains 200–250 mg of iron and the body has no natural mechanism to remove excess iron. Deferasirox is a vital part in the patients health after blood transfusions. During normal iron homeostasis the circulating iron is bound to transferrin, but with an iron overload, the ability for transferrin to bind iron is exceeded and non-transferrin bound iron is formed. It represents a potentially toxic iron form due to its high propensity to induce oxygen species and is responsible for cellular damage. The prevention of iron overload protects patients from morbidity and mortality. The primary aim is to bind to and remove iron from the body and a rate equal to the rate of transfusional iron input or greater than iron input. During clinical trails patients that received Deferasirox experienced no drug-related neutropenia or agranulocytosis, which was present with other iron chelators. Its long half life requires it to be taken once daily and provides constant chelation. Cardiac failure is a main cause of illness from transfusional iron overload but deferasirox demonstrated the ability to remove iron from iron-loaded myocardial cells protecting beta thalassemia patients from effects of required blood transfusions.
Cardiac resuscitation guidelines (ACLS/BCLS) advise that Cardiopulmonary resuscitation should be initiated promptly to maintain cardiac output until the PEA can be corrected. The approach in treatment of PEA is to treat the underlying cause, if known (e.g. relieving a tension pneumothorax). Where an underlying cause for PEA cannot be determined and/or reversed, the treatment of pulseless electrical activity is similar to that for asystole. There is no evidence that external cardiac compression can increase cardiac output in any of the many scenarios of PEA, such as hemorrhage, in which impairment of cardiac filling is the underlying mechanism producing loss of a detectable pulse.
An intravenous or intraosseous line should be started to provide medications through. The mainstay of drug therapy for PEA is epinephrine (adrenaline) 1 mg every 3–5 minutes. Although previously the use of atropine was recommended in the treatment of PEA/asystole, this recommendation was withdrawn in 2010 by the American Heart Association due to lack of evidence for therapeutic benefit. Epinephrine too has a limited evidence base, and it is recommended on the basis of its mechanism of action.
Sodium bicarbonate 1meq per kilogram may be considered in this rhythm as well, although there is little evidence to support this practice. Its routine use is not recommended for patients in this context, except in special situations (e.g. preexisting metabolic acidosis, hyperkalemia, tricyclic antidepressant overdose).
All of these drugs should be administered along with appropriate CPR techniques. Defibrillators cannot be used to correct this rhythm, as the problem lies in the response of the myocardial tissue to electrical impulses.
The mortality rate is around 95% for untreated cases, but the prognosis is reasonably favorable (80–90% survival) for patients with idiopathic TTP diagnosed and treated early with plasmapheresis.