Made by DATEXIS (Data Science and Text-based Information Systems) at Beuth University of Applied Sciences Berlin
Deep Learning Technology: Sebastian Arnold, Betty van Aken, Paul Grundmann, Felix A. Gers and Alexander Löser. Learning Contextualized Document Representations for Healthcare Answer Retrieval. The Web Conference 2020 (WWW'20)
Funded by The Federal Ministry for Economic Affairs and Energy; Grant: 01MD19013D, Smart-MD Project, Digital Technologies
In a large number of phase I and phase II studies, autologous and allogeneic CIK cells displayed a high cytotoxic potential against a broad range of varying tumor entities, whereas side effects were only minor. In many cases, CIK cell treatment led to complete remissions of tumor burden, prolonged survival durations and improved quality of life, even in advanced disease stages.
Currently, the utilization of CIK cell treatment is restricted to clinical studies, but this therapeutic approach might also benefit patients as first-line treatment modality in the future.
Treatments used to combat autoimmune diseases and conditions caused by eosinophils include:
- corticosteroids – promote apoptosis. Numbers of eosinophils in blood are rapidly reduced
- monoclonal antibody therapy – e.g., mepolizumab or reslizumab against IL-5, prevents eosinophilopoiesis
- antagonists of leukotriene synthesis or receptors
- imatinib (STI571) – inhibits PDGF-BB in hypereosinophilic leukemia
Monoclonal antibodies such as dupilumab and lebrikizumab target IL-13 and its receptor, which reduces eosinophilic inflammation in pateints with asthma due to lowering the number of adhesion molecules present for eosinophils to bind to, thereby decreasing inflammation. Mepolizumab and benralizumab are other treatment options that target the alpha subunit of the IL-5 receptor, thereby inhibiting its function and reducing the number of developing eosinophils as well as the number of eosinophils leading to inflammation through antibody-dependent cell-mediated cytotoxicity and eosinophilic apoptosis.
CIK cells, along with the administration of IL-2 have been experimentally used to treat cancer in mice and humans with low toxicity.
Research into AM functionality has been on the rise since AMs are one of the first lines of a defense against invasive pathogens. One of the most prominent fields is investigating liposomes as deliverers of antibiotics for treatment of respiratory intracellular infections. Intracellular parasites, such as M. tuberculosis, C. pneumoniae, L. monocytogenes, L. pneumophila, and F. tularensis, (to name a few) are taken up by AMs via phagocytosis, but are resistant to the biocidal mechanisms of AMs and can survive intracellularly, thus inducing severe respiratory infections. Pulmonary tuberculosis is caused by M. tuberculosis, and is now a major infectious disease worldwide and its incidence is increasing, especially in association with the AIDS pandemic. For sterilization of intracellular parasites in AMs, antibiotics are normally given orally or intravenously, but much of the antibiotics disperse to many different tissues, diminishing its effectiveness. Pulmonary administration of mannosylated liposomes is a much more direct, efficient route in targeting AMs; it enhances antimicrobial effect, reduces the dosage needed, and avoids unnecessary distribution to the blood. Since mannose receptors are exclusively expressed on the surface of AM, mannosylation of liposomes is an appealing approach to cell-selective targeting to AM. The efficacy of pulmonary administration of ciprofloxacin (CPFX) incorporated into mannosylated liposomes (mannosylated CPFX-lipososomes) was examined in rats, and determined to be an efficient means to target AMs.
mTOR inhibitors :
- Everolimus
- Temsirolimus
mTOR is a kinase enzyme inside the cell that regulates cell growth, proliferation, and survival. mTOR inhibitors lead to cell cycle arrest in the G1 phase and also inhibits tumor angiogenesis by reducing synthesis of VEGF.
A Phase II trial of Evorolimus on relapsed DLBCL patients showed a 30% Overall Response Rate (ORR).
Apoptosis is one of the major mechanisms of cell death targeted by cancer therapies. Reduced susceptibility to apoptosis increases the resistance of cancer cells to radiation and cytotoxic agents. B-cell lymphoma-2 (Bcl-2) family members create a balance between pro and anti-apoptotic proteins. Pro-apoptotic proteins include Bax and Bak. Anti-apoptotic proteins include Bcl-2, Bcl-X, Bcl-w, Mcl-1. When anti-apoptotic family members are overexpressed, apoptotic cell death becomes less likely.
- Oblimersen sodium (G3139, Genasense) targets BCL-2 mRNA
- ABT-737 (oral form navitoclax, ABT-263). A small molecule that targets anti-apoptotic Bcl-2 family proteins (Bcl-2, Bcl-X and Bcl-w). ABT-737 binds anti-apoptotic Bcl-2 proteins with an affinity two or three orders of magnitude more potent than previously reported compounds. High basal levels of Mcl-1 expression are associated with resistance to ABT-737. Combining ABT-737 with second agents that inactivate Mcl-1 may reduce this effect. ABT-737 has demonstrated single-agent efficacy against cell lines from lymphoid malignancies known to express high levels of Bcl-2, including DLBCL. It has also been found to be synergistic with proteasome inhibitors.
- Fenretinide. A synthetic retinoid that induces apoptosis of cancer cells and acts synergistically with chemotherapeutic drugs by triggering the activation of 12-Lox (12-lipoxygenase) leading to oxidative stress and apoptosis via the induction of the transcription factor Gadd153 and the Bcl-2-family member protein Bak.
In terms of the management of T cell deficiency for those individuals with this condition the following can be applied:
- Killed vaccines should be used(not "live vaccines" in T cell deficiency)
- Bone marrow transplant
- Immunoglobulin replacement
- Antiviral therapy
- Supplemental nutrition
A T cell, or T lymphocyte, is a type of lymphocyte (a subtype of white blood cell) that plays a central role in cell-mediated immunity. T cells can be distinguished from other lymphocytes, such as B cells and natural killer cells, by the presence of a T-cell receptor on the cell surface. They are called "T cells" because they mature in the thymus from thymocytes (although some also mature in the tonsils). The several subsets of T cells each have a distinct function. The majority of human T cells rearrange their alpha and beta chains on the cell receptor and are termed alpha beta T cells (αβ T cells) and are part of the adaptive immune system. Specialized gamma delta T cells, (a small minority of T cells in the human body, more frequent in ruminants), have invariant T-cell receptors with limited diversity, that can effectively present antigens to other T cells and are considered to be part of the innate immune system.
Monocytes are a type of "leukocyte", or white blood cell. They are the largest type of leukocyte and can differentiate into macrophages and myeloid lineage dendritic cells. As a part of the vertebrate innate immune system monocytes also influence the process of adaptive immunity. There are at least three subclasses of monocytes in human blood based on their phenotypic receptors.
Within the fat (adipose) tissue of CCR2 deficient mice, there is an increased number of eosinophils, greater alternative macrophage activation, and a propensity towards type 2 cytokine expression. Furthermore, this effect was exaggerated when the mice became obese from a high fat diet.
Mouse models of eosinophilia from mice infected with T canis showed an increase in IL-5 mRNA in mice spleen. Mouse models of asthma from OVA show a higher TH2 response. When mice are administered IL-12 to induce the TH1 response, the TH2 repsonse becomes suppressed, showing that mice that do not have TH2 cytokines are significantly less likely to express asthma symptoms.
Plasma cells, also called plasma B cells, plasmocytes, plasmacytes, or effector B cells, are white blood cells that secrete large volumes of antibodies. They are transported by the blood plasma and the lymphatic system. Plasma cells originate in the bone marrow; B cells differentiate into plasma cells that produce antibody molecules closely modelled after the receptors of the precursor B cell. Once released into the blood and lymph, these antibody molecules bind to the target antigen (foreign substance) and initiate its neutralization or destruction.
There is currently minimal therapeutic intervention available for BENTA disease. Patients are closely monitored for infections and for signs of monoclonal or oligoclonal B cell expansion that could indicate B cell malignancy. Splenectomy is unlikely to reduce B cell burden; peripheral blood B cell counts rose significantly in three patients who underwent the procedure. It remains to be determined whether immunosuppressive drugs, including B cell-depleting drugs such as rituximab, could be effective for treating BENTA disease.
The category of effector T cell is a broad one that includes various T cell types that actively respond to a stimulus, such as co-stimulation. This includes helper, killer, regulatory, and potentially other T cell types.
The T helper cells (T cells) are a type of T cell that play an important role in the immune system, particularly in the adaptive immune system. They help the activity of other immune cells by releasing T cell cytokines. These cells help suppress or regulate immune responses. They are essential in B cell antibody class switching, in the activation and growth of cytotoxic T cells, and in maximizing bactericidal activity of phagocytes such as macrophages.
Mature T cells express the surface protein CD4 and are referred to as CD4 T cells. Such CD4 T cells are generally treated as having a pre-defined role as helper T cells within the immune system. For example, when an antigen-presenting cell expresses an antigen on MHC class II, a CD4 cell will aid those cells through a combination of cell to cell interactions (e.g. CD40 (protein) and CD40L) and through cytokines.
CD154, also called CD40 ligand or CD40L, is a cell surface protein that mediates T cell helper function in a contact-dependent process and is a member of the TNF superfamily of molecules. It binds to CD40 on antigen-presenting cells (APC), which leads to many effects depending on the target cell type. CD154 acts as a costimulatory molecule and is particularly important on a subset of T cells called T follicular helper cells (T cells). On T cells, CD154 promotes B cell maturation and function by engaging CD40 on the B cell surface and therefore facilitating cell-cell communication. A defect in this gene results in an inability to undergo immunoglobulin class switching and is associated with hyper IgM syndrome. Absence of CD154 also stops the formation of germinal centers and therefore prohibiting antibody affinity maturation, an important process in the adaptive immune system.
The importance of helper T cells can be seen from HIV, a virus that primarily infects CD4 T cells. In the advanced stages of HIV infection, loss of functional CD4 T cells leads to the symptomatic stage of infection known as the acquired immunodeficiency syndrome (AIDS). When the HIV virus is detected early in blood or other bodily fluids, continuous therapy can delay the time at which this fall happens. Therapy can also better manage the course of AIDS if and when it occurs. There are other rare disorders such as lymphocytopenia which result in the absence or dysfunction of CD4 T cells. These disorders produce similar symptoms, many of which are fatal.
Since NK cells recognize target cells when they express nonself HLA antigens (but not self), autologous (patients' own) NK cell infusions have not shown any antitumor effects. Instead, investigators are working on using allogeneic cells from peripheral blood, which requires that all T cells be removed before infusion into the patients to remove the risk of graft versus host disease, which can be fatal. This can be achieved using an immunomagnetic column (CliniMACS). In addition, because of the limited number of NK cells in blood (only 10% of lymphocytes are NK cells), their number needs to be expanded in culture. This can take a few weeks and the yield is donor-dependent. A simpler way to obtain high numbers of pure NK cells is to expand NK-92 cells whose cells continuously grow in culture and can be expanded to clinical grade numbers in bags or bioreactors. Clinical studies have shown it to be well tolerated and some antitumor responses have been seen in patients with lung cancer, melanoma, and lymphoma.
Infusions of T cells engineered to express a chimeric antigen receptor that recognizes an antigen molecule on leukemia cells could induce remissions in patients with advanced leukemia. Logistical challenges are present for expanding T cells and investigators are working on applying the same technology to peripheral blood NK cells and NK-92.
In a study at Boston Children's Hospital, in coordination with Dana-Farber Cancer Institute, whereby immunocompromised mice had contracted lymphomas from EBV infection, an NK-activating receptor called NKG2D was fused with a stimulatory Fc portion of the EBV antibody. The NKG2D-Fc fusion proved capable of reducing tumor growth and prolonging survival of the recipients. In a transplantation model of LMP1-fueled lymphomas, the NKG2D-Fc fusion proved capable of reducing tumor growth and prolonging survival of the recipients.
Monocytosis is the state of excess monocytes in the peripheral blood. It may be indicative of various disease states.
Examples of processes that can increase a monocyte count include:
- chronic inflammation
- stress response
- Cushing's syndrome (hyperadrenocorticism)
- immune-mediated disease
- granulomatous disease
- atherosclerosis
- necrosis
- red blood cell regeneration
- viral fever
- sarcoidosis
A high count of CD14+CD16++ monocytes is found in severe infection (sepsis)
In the field of atherosclerosis high numbers of the CD14++CD16+ intermediate monocytes were shown to be predictive of cardiovascular events in at risk populations.
B cells, also known as B lymphocytes, are a type of white blood cell of the lymphocyte subtype. They function in the humoral immunity component of the adaptive immune system by secreting antibodies. Additionally, B cells present antigen (they are also classified as professional antigen-presenting cells (APCs)) and secrete cytokines.
In mammals, B cells mature in the bone marrow, which is at the core of most bones. In birds, B cells mature in the bursa of Fabricius, a lymphoid organ. (The "B" from B cells comes from the name of this organ, where it was first discovered by Chang and Glick, and not from bone marrow as commonly believed).
B cells, unlike the other two classes of lymphocytes, T cells and natural killer cells, express B cell receptors (BCRs) on their cell membrane. BCRs allow the B cell to bind a specific antigen, against which it will initiate an antibody response.
PTLD may spontaneously regress on reduction or cessation of immunosuppressant medication, and can also be treated with addition of anti-viral therapy. In some cases it will progress to non-Hodgkin's lymphoma and may be fatal. A phase 2 study of adoptively transferred EBV-specific T cells demonstrated high efficacy with minimal toxicity.
Gamma delta T cells (γδ T cells) are T cells that have a distinctive T-cell receptor (TCR) on their surface. Most T cells are αβ (alpha beta) T cells with TCR composed of two glycoprotein chains called α (alpha) and β (beta) TCR chains. In contrast, gamma delta (γδ) T cells have a TCR that is made up of one γ (gamma) chain and one δ (delta) chain. This group of T cells is usually much less common than αβ T cells, but are at their highest abundance in the gut mucosa, within a population of lymphocytes known as intraepithelial lymphocytes (IELs).
The antigenic molecules that activate gamma delta T cells are still largely unknown. However, γδ T cells are peculiar in that they do not seem to require antigen processing and major-histocompatibility-complex (MHC) presentation of peptide epitopes, although some recognize MHC class Ib molecules. Furthermore, γδ T cells are believed to have a prominent role in recognition of lipid antigens. They are of an invariant nature and may be triggered by alarm signals, such as heat shock proteins (HSP).
There also exists a γδ-T-cell sub-population within the epidermal compartment of the skin of mice. Originally referred to as Thy-1+ dendritic epidermal cells (Thy1+DEC), these cells are more commonly known as dendritic epidermal T cells (DETC). DETCs arise during fetal development and express an invariant and canonical Vγ3 Vδ1 T-cell receptor [using Garman nomenclature].
Natural killer cells or NK cells are a type of cytotoxic lymphocyte critical to the innate immune system. The role NK cells play is analogous to that of cytotoxic T cells in the vertebrate adaptive immune response. NK cells provide rapid responses to viral-infected cells, acting at around 3 days after infection, and respond to tumor formation. Typically, immune cells detect major histocompatibility complex (MHC) presented on infected cell surfaces, triggering cytokine release, causing lysis or apoptosis. NK cells are unique, however, as they have the ability to recognize stressed cells in the absence of antibodies and MHC, allowing for a much faster immune reaction. They were named "natural killers" because of the initial notion that they do not require activation to kill cells that are missing "self" markers of MHC class 1. This role is especially important because harmful cells that are missing MHC I markers cannot be detected and destroyed by other immune cells, such as T lymphocyte cells.
NK cells (belonging to the group of innate lymphoid cells) are defined as large granular lymphocytes (LGL) and constitute the third kind of cells differentiated from the common lymphoid progenitor-generating B and T lymphocytes. NK cells are known to differentiate and mature in the bone marrow, lymph nodes, spleen, tonsils, and thymus, where they then enter into the circulation. NK cells differ from natural killer T cells (NKTs) phenotypically, by origin and by respective effector functions; often, NKT cell activity promotes NK cell activity by secreting interferon gamma. In contrast to NKT cells, NK cells do not express T-cell antigen receptors (TCR) or pan T marker CD3 or surface immunoglobulins (Ig) B cell receptors, but they usually express the surface markers CD16 (FcγRIII) and CD56 in humans, NK1.1 or NK1.2 in C57BL/6 mice. The NKp46 cell surface marker constitutes, at the moment, another NK cell marker of preference being expressed in both humans, several strains of mice (including BALB/c mice) and in three common monkey species.
In addition to the knowledge that natural killer cells are effectors of innate immunity, recent research has uncovered information on both activating and inhibitory NK cell receptors which play important functional roles, including self tolerance and the sustaining of NK cell activity. NK cells also play a role in the adaptive immune response: numerous experiments have demonstrated their ability to readily adjust to the immediate environment and formulate antigen-specific immunological memory, fundamental for responding to secondary infections with the same antigen. The role of NK cells in both the innate and adaptive immune responses is becoming increasingly important in research using NK cell activity as a potential cancer therapy.
In certain eligible patients, a conditioning regimen of high-dose chemotherapy followed by an autologous stem cell transplant may be used to extend a period of first complete remission. Likewise, a recent study suggests that high dose therapy and autologous stem cell transplantation results in favorable outcomes for elderly patients with Non-Hodgkin's Lymphoma.
Alemtuzumab has been investigated for use in treatment of refractory T-cell large granular lymphocytic leukemia.
After leaving the bone marrow, the B cell acts as an antigen presenting cell (APC) and internalizes offending antigens, which are taken up by the B cell through receptor-mediated endocytosis and processed. Pieces of the antigen (which are now known as "antigenic peptides") are loaded onto MHC II molecules, and presented on its extracellular surface to CD4+ T cells (sometimes called "T helper cells"). These T cells bind to the MHC II-antigen molecule and cause activation of the B cell. This is a type of safeguard to the system, almost like a two-factor authentication method. First, the B cells have to encounter a foreign antigen, and are then required to be activated by T helper cells before they differentiate to specific cells.
Upon stimulation by a T cell, which usually occurs in germinal centers of secondary lymphoid organs like the spleen and lymph nodes, the activated B cell begins to differentiate into more specialized cells. Germinal center B cells may differentiate into memory B cells or plasma cells. Most of these B cells will become plasmablasts (or "immature plasma cells"), and eventually plasma cells, and begin producing large volumes of antibodies. Some B cells will undergo a process known as affinity maturation. This process favors, by selection for the ability to bind antigen with higher affinity, the activation and growth of B cell clones able to secrete antibodies of higher affinity for the antigen.
Immunoglobulin E (IgE) is important in mast cell function. Immunotherapy with anti-IgE immunoglobulin raised in sheep resulted in a transient decrease in the numbers of circulating mast cells in one patient with mast cell leukemia. Although splenectomy has led to brief responses in patients with mast cell leukemia, no firm conclusions as to the efficacy of this treatment are possible. Chemotherapy with combination of cytosine arabinoside and either idarubicin, daunomycin, or mitoxantrone as for acute myeloid leukemia has been used. Stem cell transplantation is an option, although no experience exists concerning responses and outcome.
The immune system must achieve a balance of sensitivity in order to respond to foreign antigens without responding to the antigens of the host itself. When the immune system responds to very low levels of antigen that it usually shouldn't respond to, a hypersensitivity response occurs. Hypersensitivity is believed to be the cause of allergy and some auto-immune disease.
Hypersensitivity reactions can be divided into four types:
- Type 1 hypersensitivity includes common immune disorders such as asthma, allergic rhinitis (hay fever), eczema, urticaria (hives) and anaphylaxis. These reactions all involve IgE antibodies, which require a T2 response during helper T cell development. Preventive treatments, such as corticosteroids and montelukast, focus on suppressing mast cells or other allergic cells; T cells do not play a primary role during the actual inflammatory response. It's important to note that the numeral allocation of hypersensitivity "types" does not correlate (and is completely unrelated) to the "response" in the T model.
- Type 2 and Type 3 hypersensitivity both involve complications from auto-immune or low affinity antibodies. In both of these reactions, T cells may play an accomplice role in generating these auto-specific antibodies, although some of these reactions under Type 2 hypersensitivity would be considered normal in a healthy immune system (for example, Rhesus factor reactions during child-birth is a normal immune response against child antigens). The understanding of the role of helper T cells in these responses is limited but it is generally thought that T2 cytokines would promote such disorders. For example, studies have suggested that lupus (SLE) and other auto-immune diseases of similar nature can be linked to the production of T2 cytokines.
- Type 4 hypersensitivity, also known as delayed type hypersensitivity, are caused via the over-stimulation of immune cells, commonly lymphocytes and macrophages, resulting in chronic inflammation and cytokine release. Antibodies do not play a direct role in this allergy type. T cells play an important role in this hypersensitivity, as they activate against the stimulus itself and promote the activation of other cells; particularly macrophages via T1 cytokines.
Other cellular hypersensitivities include cytotoxic T cell mediated auto-immune disease, and a similar phenomenon; transplant rejection. Helper T cells are required to fuel the development of these diseases. In order to create sufficient auto-reactive killer T cells, interleukin-2 must be produced, and this is supplied by CD4 T cells. CD4 T cells can also stimulate cells such as natural killer cells and macrophages via cytokines such as interferon-gamma, encouraging these cytotoxic cells to kill host cells in certain circumstances.
The mechanism that killer T cells use during auto-immunity is almost identical to their response against viruses, and some viruses have been accused of causing auto-immune diseases such as Type 1 diabetes mellitus. Cellular auto-immune disease occurs because the host antigen recognition systems fail, and the immune system believes, by mistake, that a host antigen is foreign. As a result, the CD8 T cells treat the host cell presenting that antigen as infected, and go on to destroy all host cells (or in the case of transplant rejection, transplant organ) that express that antigen.
Some of this section is a simplification. Many auto-immune diseases are more complex. A well-known example is rheumatoid arthritis, where both antibodies and immune cells are known to play a role in the pathology. Generally the immunology of most auto-immune diseases is not well understood.